Moving Beyond the Household: Innovations in Data Collection on Kinship

Sangeetha Madhavan
University of Maryland

Shelley Clark
McGill University

Donatien Beguy
African Population and Health Research Center

Caroline W. Kabiru
African Population and Health Research Center

Mark Gross
University of Maryland

We are indebted to Collins Juma for field management support and the APHRC interviewers. We also thank Michael Wagner and Malcom Araos Egan for their assistance with data management and analysis of geospatial data. This project was funded by a grant from the Eunice Shriver National Institute of Child Health and Human Development (1R21-HD078763-01A1). All correspondence should be addressed to Sangeetha Madhavan, 1119 Taliaferro Hall, College Park, MD 20742, email: smadhava@umd.edu.
Abstract

Across various settings, it has been shown that the co-residential household is an insufficient measure of family structure and family support. However, it continues to be the primary means of population data collection. To address this problem, we have developed a new instrument – Kinship Support Tree (KST) – to collect kinship structure and support data on residential and non-residential kin and tested it on a sample of 462 single mothers and their children in a slum community in Nairobi, Kenya. This instrument is unique in four important ways: 1) it is not limited to the co-residential household; 2) it distinguishes potential from functional kin; 3) it incorporates multiple geospatial measures; and 4) it collects data on kinship relations from the perspective of children. In this paper, we describe the KST instrument, assess the data collected by comparing it to data from household rosters, and consider the challenges and feasibility of administration of the KST.

Keywords: kinship, family structure, family support, household, children, Kenya
1. Introduction

A large body of literature in both high (Amato 2000; Cavanagh and Huston 2006; Gennetian 2005; Kim 2011; Magnuson and Berger 2009; Steele, Sigle-Rushton and Kravdal 2009) as well as low and middle income countries (LMICs) (Chae 2011; Clark and Hamplová 2013; Goldberg 2013a, 2013b; Marteleto, Cavanagh, Prickett, and Clark 2016; Thiombiano, LeGrand, and Kopiané 2013) demonstrates the importance of family structure and family support on the well-being of children and adolescents. While much of this work focused on parental presence, other research has considered the protective or beneficial role of grandparental survival (Cunningham et al. 2010) or presence (Parker and Short 2006; Townsend et al. 2002). Most of these studies equate “family structure” with co-residence and co-residence with support. Yet, family demographers have long recognized that the co-residential household is but one site to understand the influence of family structure and family support on children’s well-being. Families transcend time and space and defy easy categorization because of the complexities inherent in defining membership and roles. In the US context, the increased attention paid to “family complexity” is mainly a result of increase in divorce, remarriage, cohabitation and nonmarital childbearing combined with the emergence of new forms of families such as “living apart together” (LAT) (Cancian et al. 2011; Manning et al. 2014). Such complex families often offer more limited and less consistent forms of family based support (Harknett and Knab 2007).

In urban contexts in sub-Saharan Africa, similar shifts are underway driven primarily by high levels of nonmarital fertility and divorce. Migration and premature adult death add further complexity. These changes, coupled with acute financial pressures, have brought about family structures that are dispersed over households, regions and even countries. Yet, tools used to collect data on family structure and family support continue to be centered around the household roster. Moreover, kinship relationships within the household that are captured by these rosters are usually from the perspective of the household head. In complex family structures, establishing the relationship of co-residential kin to children becomes a best guess effort thereby limiting our ability to conduct robust analyses of the influence of family structure and support on child well-being. Methodological innovations in research on migration (Collinson 2010; Hosegood and Timaeus 2006) and social networks (Kohler 1997; White and Watkins 2000) have advanced our understanding of the importance of social relationships beyond household boundaries, but this work has not paid attention to kinship nor children’s well-being. Finally, the growing use of spatial statistics in disease and health surveillance (Rushton 2003), as well as in human geography (Kwan 2000), have yet to be applied to assess kinship ties despite the promises that they offer.

To address these problems, we have developed a new survey instrument – the Kinship Support Tree (KST) – to collect kinship structure and support data for single mothers and their children in one slum community in Nairobi, Kenya. We focus on this population because children born in the slums of
Nairobi are significantly more likely to die by age 5 than children in the rest of Kenya (APHRC 2014). Moreover, children of single mothers may have particularly high rates of mortality (Clark and Hamplova 2013). While economic support and childcare assistance from their residential and non-residential extended kin may help protect children of single mothers, kinship support for these mothers is potentially declining due to three processes under way in much of sub-Saharan Africa: 1) increased distance between adult children and extended kin due to high rates of female and male migration, particularly from rural areas to informal settlements in urban locations (Adepoju 2000; Posel 2006); 2) pervasive poverty which influences the ability and willingness of kin to provide support (Jakiela and Oozier 2015); and 3) the transformations of views on marriage, women’s roles, and family norms, with a greater reliance on conjugal bonds than kinship ties (Clark, Kabiru and Mathur 2010; Smith 2001). As a result, there is likely to be substantial variation in the type and amount of kinship support that children of poor, urban, single mothers receive which, in turn, could put their health and well-being at risk. This hypothesis, however, has not been examined carefully because of inadequate data collection instruments.

In this paper, we 1) review the current state of data collection on familial support; 2) describe the new KST instrument; 3) assess the data collected for single mothers and their children via the KST and, specifically, in comparison to data collected from standard household rosters; and 4) discuss challenges encountered in administering the KST in this setting. After documenting the improvements in data quality and the feasibility of implementing this instrument in a challenging environment, we argue that this instrument can be adapted to not just other sub-Saharan African contexts undergoing similar demographic shifts but also to Western contexts where seismic changes in family structure present a timely opportunity to consider new data collection approaches.

2. Current State of Data Collection on Family Structure and Support in Sub-Saharan Africa

With a few notable exceptions (discussed below), almost all data collections instruments currently in use treat residential family structure as a proxy for family support. While acknowledging the debates surrounding the definition of household (van de Walle 2006), the use of residential boundaries to delineate family is standard practice. Moreover, in line with an altruistic household model (Becker 2009), the presence of particular individuals is assumed to be a measure of support. While it may be true that, in general, co-resident members provide some type of support to one another, in the context of a slum community with very limited livelihood options, there is good reason to question this assumption. Furthermore, support is treated as a generic concept encompassing financial, material, practical, and emotional without any level of specificity about quantity, quality, or type.
The primary sources of quantitative data on family structure and family support in sub-Saharan Africa come from four main sources: 1) Demographic and Health Surveys (DHS); 2) Health and Demographic Surveillance Systems (HDSS); 3) censuses; and 4) specialized data sets focused on specific issues and populations. DHS data have long been used to examine issues related to family and child well-being (Clark and Hamplova 2013; Gage 1997; Parker and Short 2009; Smith-Greenaway and Madhavan 2015; Smith-Greenaway and Trinitapoli 2014). The main strengths are that they are nationally representative and use standardized questionnaires to facilitate comparison across countries and over time. Moreover, they are public and, are, for the most part, easy to use for analysis. However, they are limited in a number of important ways. First, measures of family structure and support are limited to co-residential household members leaving out important non-residential family linkages. Second, co-residence is assumed to be an adequate proxy for family support, whereas some family members may offer little if any support in childrearing despite residing with the child. To be fair, household rosters were primarily designed for identifying eligible respondents for individual interviews and not for collecting support data. However, in the absence of any alternatives, analysis using the data implicitly or explicitly uses structure as a proxy for support. Third, household rosters collect data on co-residential kin relationships from the perspective of household heads, not from children. Under some conditions, these relationships to the household heads can be easily transformed into reflecting relationships with children. For example, if the household head is the father of the child then that father’s brother is the child’s uncle. Quite often, however, we are left with best guess classification undermining our ability to examine family structure effects on children’s well-being. For instance, although we may know that the father is married, we often cannot be sure that the father’s wife is the child’s biological mother.

HDSS data are found in a number of African countries in all parts of the continent (e.g. Navrongo in Ghana, Niakhar in Senegal, Agincourt in South Africa). There are 39 sites in Africa and 52 globally that comprise the INDEPTH network which is aimed at coordinating data collection and analysis efforts across sites (see http://www.indepth-network.org/). There are two main features of the HDSS that contribute to their appeal. One is the longitudinal dimension, which enables deeper understanding of household level change. Two, HDSS sites make a greater effort to reflect the complexities of lived experience. For example, the Agincourt site includes temporary migrants as household members even if they are not physically present because of their social and financial link to the household (Collinson 2010). The Hlabisa site in KwaZulu Natal, South Africa goes one step further by allowing members to have more than one residence (Hosegood and Timaeus 2006). These benefits have enabled analysis of familial structure and support in innovative ways (Schatz et al. 2014; Townsend et al. 2002). Some sites collect data quarterly which allows even more opportunity to capture household-level dynamics in shorter time intervals. This is particularly crucial in areas with high levels of mobility. However, the downside of
such intensive follow-up is that it can only be done in localized communities thereby making it difficult to generalize to larger populations. Moreover, the resources needed to maintain a HDSS site are considerable. Lastly, similar to the DHS, kinship relationships are also collected from the perspective of household head and co-residence is usually the only available proxy for family support.

National censuses offer some leverage in conducting household-level analyses as long as it is understood that the household is essentially a unit of enumeration rather than an adequate representation of a social or economic unit (van de Walle 2006). In this sense, it should be seen less as a theoretically substantive measure of family structure or support and more so as a “system for organizing the pattern of residence of a population accessible to interviewers...” (van de Walle 2006: xxii). Within these limitations, they offer some advantages as described in van de Walle’s (2006) volume and by Garenne (2011). They are nationally representative and usually available at multiple time points and offer geographical detail not available in standard surveys. More relevant for the present discussion is their ability to group individuals in such a way that we can study some attributes of co-residential family units, albeit with all its imperfections. Finally, because most censuses use a fairly standardized definition of household centered around the pooling and sharing of resources, comparative analyses across countries is possible. However, one major drawback is data access often controlled by the political climate which may not be favorable to allowing access to outside researchers. A related issue is government control of the data collection which, sometimes, can lead to substantial undercounts of certain areas or groups. The South African censuses conducted under apartheid, for example, suffer from substantial undercounting of the Black population because of apartheid era policies of counting “bantustans,” where the majority of the Black population lived, as independent homelands outside the national boundaries (Khalfani et al. 2005).

In addition, there are a number of specialized projects that have attempted to collect data on family relationships that extend beyond household boundaries and intergenerational transfers of financial support. The Cape Area Panel Study (CAPS) project in South Africa and the Malawi Diffusion and Ideational Change Project (MDICP) are two such efforts. These studies have provided insights on the critical role of non-residential kin and demonstrated that aunts and uncles are as likely if not more to make financial transfers as grandparents (Weinreb 2002). However, the CAPS survey asks only about kin who provide financial support and, therefore telling us nothing about the availability of kin or the characteristics of kin who do not provide support. Furthermore, both surveys on include questions about financial/material transfers and provide no data on other forms of support. Finally, it should be noted that methodological advancement in GIS tools have made geo-spatial measures an increasingly popular

1 It should be noted that the African Census Analysis project housed at the University of Pennsylvania (http://www.acap.upenn.edu/) – which served as the basis for van de Walle’s volume, is intended to facilitate access to African censuses. Moreover, the IPUMS project housed at the University of Minnesota has greatly increased access to census data.
addition to studies on family support (Madhavan et al. 2014; Matthews et al. 2005) but the full potential of GIS has yet to be fully exploited to understand family complexity. Taken together, all these studies have broadened our conceptualization and measurement of family processes beyond the co-residential household. The survey instrument we present in this paper is an attempt to integrate and extend these innovations into a user friendly standardized format that is unique in four important ways: 1) it is not limited to the co-residential household; 2) it distinguishes potential from functional kin; 3) it incorporates geospatial measures; and 4) it collects data from the perspective of children. In the remainder of the paper, we describe the instrument in detail, assess how well it captures co-residential and non-residential family members and support, examine know much respondents are able to report about their close kin and determine the reliability of geospatial data. In addition, we also discuss some of the practical challenges of implementing this type of data collection.

3. Description of Kinship Support Tree (KST)

3.1. Conceptual Background

The design of our instrument is informed by kinship and life course theories, particularly the principle of “linked lives,” which emphasizes the interconnectedness of lives over the life course (Elder 1987). We also draw on Bourdieus’s (1977) distinction between theoretical kinship which is defined as the genealogically mapped universe of kin and practical kinship referring to those kin who provide support. In the KST, we use the term “potential kin” to identify those people who are capable of providing support. In the context of the KST, it refers kin of a child who are known to be alive to the child’s mother and are over the age of 7. “Functional kin” identifies those among the potential kin who provide one or more forms of support. Our use of the child as the reference category for enumerating relationships is a departure from current practice that collects relationship data from the perspective from the household head. This is an important conceptual shift because we privilege the child’s social positioning rather than relying on the presence of an adult to ascertain the child’s position. The emphasis on functionality and interconnectedness are in line with recent calls to view families not as a fixed social institution but rather as a dynamic set of family activities (Finch and Mason 2000; Finch 2007; Morgan 1996). In other words, Finch (2007) introduces the term “display” which she defines as:

“[the] process by which individuals, and groups of individuals, convey to each other and relevant audiences, that certain of their actions do constitute ‘doing family things’ and thereby confirm that these relationships are ‘family’ relationships” (67).

Our domains of support provided by functional kin – economic support, childcare provision, and emotional closeness – are based on general theories of the importance of social capital (Coleman 1988) and draw specifically from Weisner’s (1997) work on children’s support networks in Kenya. Moreover,
we also draw extensively on ethnographic research on kinship connectivity conducted by the research team in South Africa (Madhavan et al. 2014; Madhavan and Gross 2013). Moreover, we recognize that people may have several kinship support groups that are functionally distinct, change over time, and vary across space and other factors. By examining kinship structure and support at two time points and incorporating multiple geospatial measures, we will be able to observe how changes in circumstances and geographical proximity of particular kin affect their ability to provide particular types of support to single mothers and their children. We also distinguish support provided to the household from that provided directly to the child in order to identify, with greater confidence, specific support linkages.

3.2. Components of KST
Our instrument offers a quantitative option to the qualitative toolkit that Finch (2007) describes to capture “display.” It has the following components:

1) Child’s kinship tree: includes the names and relationship of all closest kin from the child’s perspective starting with biological parents, full siblings, grandparents, aunts and uncles on both maternal and paternal sides. In addition, we record all step parents (including mother’s co-wives), as well as half and step siblings. Inclusion of the complete set of full, half, and step siblings will allow us to examine both the resource dilution effect (with younger siblings) and the care provision effect (by older female siblings).

2) Distant kin and non-biological sources of support: includes names and relationship of kin who are distantly related (e.g. third cousins) or not related but provide some form of support to the child.

3) Social, economic, and demographic data: For each individual kin and non-kin member, we gather data on survival status, age (or age at death for kin who have dead), gender, ethnicity, educational attainment, and employment status. It should be noted that these data are collected regardless of whether the kin member provides support so that we can examine the factors that increase the likelihood of being a “functional kin member”.

4) Geo spatial data: Because of the interest in the role of geographical location and kin-based support in this project, we collect location data in four ways: 1) GPS coordinates to ascertain latitude and longitude; 2) the name of the specific location; 3) self-reported or vernacular reports of distance to kin, cost of travel to and from kin and the difficulty of travel to the kin location; and 4) mode of transport to get to kin.
5) **Type of support:** For each person named (excluding those aged 7 years and younger), we ask about three types of support provided to the mother and child: financial, childcare, and emotional. We use this age cut off because children as young as 8 in this community often contribute to child care and sometimes emotional support.

In addition, we collect demographic data on the respondent including complete union histories and self-reported measures of health. We also collect physical health and cognitive development data for the focal child. Finally, we conduct “reliability interviews” using an abridged questionnaire with a small group of kin members to assess the extent of consistency between mother’s reports and those of her kin.

4. **Study Site, Sample and Survey Design**

4.1. **Site Description**

We are testing the instrument in Korogocho, a slum community in Nairobi, Kenya. The choice of Kenya and Nairobi, in particular, was driven by three factors. First, Nairobi is testimony to the rapid urbanization occurring in many African countries with its population having increased from 293,000 to about 3.4 million over the past 40 years. The last decade alone saw a jump from just over two to four million (UN Habitat 2014). Second, the proliferation of slum communities that accompanies such rapid urbanization necessitates a better understanding of how people survive amidst formidable economic insecurity. Carr-Hill (2015) argues that conventional household surveys are inappropriate for slum communities because of the difficulty in identifying a household and because of mobility. Third, the slum community is part of the Nairobi Urban Health and Demographic Surveillance System (NUHDSS), an ongoing longitudinal data collection system in place since 2002 that is administered by the African Population and Health Research Center (APHRC). The NUHDSS collects census data every 4 months on fertility, mortality, migration, marital status, educational attainment, ethnicity, household composition, selected child health indicators, and household socio-economic status from approximately 29,250 people living in 10,260 households. About 25% of Korogocho residents aged 12 years and above were born in the area. The main ethnic groups include Kikuyu (30%), Luo (29%), Luhya (18%), and Kamba (7%). Predominantly Kikuyu and Kamba areas are geographically closer to Nairobi compared to Luo and Luhya areas which are located farther away in western Kenya. Like other slum communities, the areas covered by the NUHDSS are characterized by a lack of sanitation, limited health care facilities, congested and low-quality housing, high levels of violence and crime, and widespread unemployment and poverty. Child health outcomes – nutritional status, vaccination coverage, and educational progress – are very poor (APHRC 2014). Testing the instrument in this site offers several distinct advantages because of the NUHDSS. First, it provides a current sampling frame, often not available in urban African settings. Second the ongoing tracking of the population enables follow-up of the study sample at least
within the study site. Third, our project has access to a highly experienced field team, fluent in both Swahili and English. Finally, APHRC’s long history of community involvement greatly facilitates working in this community.

4.2. Sample Description

Our choice of single mothers as the target group was motivated by substantive and practical reasons. As mentioned earlier, the well-being of single mothers and their children continues to be an understudied topic because of inadequate data collection instruments. Moreover, single mothers may be especially dependent on the support from other family members to help them care for and financially support their young children. However, the continued use of standard household survey rosters does not advance our understanding of either the vulnerability or strengths of single mothers with respect to kinship support in such contexts. Practically, because this project is meant to be an experimental one to test validity and feasibility of the instrument and, therefore, has resource limitations, it made sense to identify a specific population of interest. Our target sample for Round 1 was 500 women in Korogocho who were single at the time of most recent census update and had at least one child born between 2010 and 2015. Single is defined as not currently married or cohabiting with a partner. We focus on one child per woman because different children can have different fathers and, therefore, different kin structures. To ensure that we could attain our target, we attempted to reach as many of the 840 women from the NUHDSS who fit these criteria as possible. After excluding those who were deemed ineligible because they were in union or did not have a child of eligible age (n=183), those who had left the area (n=126), those who either refused or did not schedule and interview (n=37) and those who were not accessible for other reasons (n=32), the research team successfully interviewed 462 women. The KST has been administered a second time after a 6 month interval to capture changes in kinship structure and support and to assess the feasibility of following individuals in a highly mobile community. Therefore, we made every attempt to record mobile phone numbers for all respondents as well as at least one other kin member to facilitate follow-up in Round 2 and to minimize attrition bias. Retention of samples in highly mobile populations is a perennial challenge and we hope this project will demonstrate the effectiveness of collecting cell phone information to minimize attrition. In order to test the reliability of the instrument, almost all data are being re-collected in Round 2.

4.3. Design of survey

Figure 1 shows the survey design describing sample size and specific data collected at each stage. Using the 462 women as our starting point, we ask each respondent to list her close kin – surviving and deceased – from the child’s perspective. This includes the child’s siblings (full, half, and step), biological father, maternal and paternal grandparents, and maternal and paternal aunts and uncles. In addition, we also
STARTING SAMPLE OF RESPONDENTS
N=462
Data: individual, household, stress level, union and maternity histories

FOCAL CHILDREN
N=462
Data: physical health, cognitive development

DECEASED KIN
(N=595)
Data: Age at death

LISTING of CLOSE KIN of FOCAL CHILD
N=5343
Data: survival status

Survival Status of Kin Unknown
(N=1074)

KNOWN SURVIVING KIN
N=3674
Data: age

Age 12+
(N=3274)
Employment status

POTENTIAL KIN
Surviving Kin over the age of 7 (N=3453)
Data: Geo-spatial, education, frequency of contact with child, functional support provision

Kin age 7 or under
N=221

Emotional Support Provision
Can confide in
Can rely on in crisis

Child Care Support Provision
Type of support
Frequency of support

Financial Support Provision
Amount of support
Frequency of support
Purpose of support

STARTING SAMPLE OF RESPONDENTS
N=462
Data: individual, household, stress level, union and maternity histories

FOCAL CHILDREN
N=462
Data: physical health, cognitive development

DECEASED KIN
(N=595)
Data: Age at death

LISTING of CLOSE KIN of FOCAL CHILD
N=5343
Data: survival status

Survival Status of Kin Unknown
(N=1074)

KNOWN SURVIVING KIN
N=3674
Data: age

Age 12+
(N=3274)
Employment status

POTENTIAL KIN
Surviving Kin over the age of 7 (N=3453)
Data: Geo-spatial, education, frequency of contact with child, functional support provision

Kin age 7 or under
N=221

Emotional Support Provision
Can confide in
Can rely on in crisis

Child Care Support Provision
Type of support
Frequency of support

Financial Support Provision
Amount of support
Frequency of support
Purpose of support

Figure 1: Flow Chart of KST Survey Questionnaire
asked the respondent to name any additional distant kin or non-kin who provide her with support, which yielded only 27 responses. Given there are so few and that our primary interest is kin, we exclude them from analysis presented in this paper. The group of enumerate kin is further classified by survival status and age with targeted data collection designed for each of the sub groups. Functional kin – those who provide one or more of the three types of support – are identified as a subset of potential kin defined as those known to be alive and over the age of 7.

5. Who and what does the KST capture?

5.1. Comparison with Household Roster

To gain a perspective on the utility of the KST, we compare it to the more conventional household roster. Because the KST instrument was designed to distinguish potential from functional kin, it allows us to identify, with far greater precision and nuance, co-residents who actually provide support rather than assume that all co-residents are support providers. Figure 2 compares the points of intersection between the KST and the household roster in terms of residence status, kin status and functionality.

Figure 2. Coverage of Kinship Support Tree and Conventional Household Roster
The areas of intersection show that both instruments capture co-residents who are close kin regardless of their functional status and distant/non-kin who provide support. However, the household roster cannot distinguish between co-residential close kin and distant/non-kin who are functional versus those who are non-functional. Perhaps more importantly are the non-intersecting sectors. The KST captures all close kin regardless of functionality who are not co-resident as well as distant/non-kin who are not co-resident but provide support. The household roster, on the other hand, captures non-functional distant/non-kin who are co-resident. It could be argued that knowing sources of support from non-residential members, as the KST does, is critical in understanding outcomes because it provides a more complete picture of vulnerability. This is a way to address Carr-Hill’s (2015) criticism of household surveys being inadequate to capture true poverty in slum communities. Conversely, not knowing that a distant cousin who provides no support lives in the household – something the KST does not capture – undermines the ability to measure the extent of burden commonly captured through indices like the dependency ratio. Indeed, when we compared household size of respondents captured by the KST to the matched households in the NUHDSS, the figures were 4.3 and 4.8 respectively. To highlight these differences more clearly, Table 1 provides numbers for Figure 2 by showing who is being captured by the conventional household roster and those captured by the KST. The denominator is the total network of all co-residential members and non-residential family members as captured by either or both the household roster and the KST.

Table 1. Percentage of single mother’s total network members captured by household roster and KST

<table>
<thead>
<tr>
<th></th>
<th>KST</th>
<th>HH Roster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-res/functional</td>
<td>16.0%</td>
<td>27.9%</td>
</tr>
<tr>
<td>Co-res/close kin/non-functional</td>
<td>11.9%</td>
<td></td>
</tr>
<tr>
<td>Co-res/distant kin/non-functional</td>
<td>------</td>
<td>24.3%</td>
</tr>
<tr>
<td>Non-res/functional</td>
<td>6.4%</td>
<td></td>
</tr>
<tr>
<td>Non-res/close kin/non-functional</td>
<td>41.4%</td>
<td></td>
</tr>
</tbody>
</table>

This table clearly shows the inadequacy of using the household roster to reflect family support. The household roster and KST both capture all co-resident kin members (27.9%). However, the KST is able to further distinguish between functional (16.0%) and non-functional (11.9%) co-resident kin members. Functional status for this table is defined as kin who provide financial or child care support. The percentage of co-resident functional members is a surprisingly low. In other words, on average, just 16% of a network is made up of co-resident/functional members. Both instruments also capture those who are co-resident close kin but non-functional which only makes up under 12% of her network. The
household roster, unlike the KST, also captures co-residents who are distantly related kin or non-kin and non-functional; this group makes up a surprisingly high proportion of these networks (24.3%). Given that this is a slum setting, it may be fairly common to live with people who are distantly (e.g. cousins or aunts once removed) or unrelated to you but who provide no support for women or their children. Beyond being able to distinguish functionality, the KST also captures non-residents who are functional – 6.4% of the network – and non-resident close kin who are not functional which comprises the largest proportion of the network at over 40%. Moreover, almost 63% of all functional kin are co-resident and 37% non-resident. When we broke this down by type of support, we found that financial support is the least common type of support provided by kin but that co-resident kin are more likely to provide this support when it is provided. Given the high rates of unemployment and fragile economic conditions, this is perhaps not a surprising finding. Moreover, only 18% of all potential kin provide some form of child care support and even among household co-residents, it does not exceed 50% (analysis by authors). In short, the household roster overestimates the functional status of co-residents and misses all forms of non-residential support. Therefore, the KST greatly strengthens our ability to collect robust data on family support.

5.2. How much do people know about their kin?

While the idea of collecting detailed data on all close kin is alluring, researchers quickly encounter the problem that respondents do not know even basic information about particular kin. For example, Weinreb (2007) asked women to only report on their side of the family and husbands to report on theirs. This issue is likely to have greater salience when interviewing single mothers, many of whom may know very little about their kin, especially on the child’s paternal side. Unlike eliciting information about co-residential family members living in the same household, where the respondent would be expected to know their survival status, age, marital status, employment status, and education, some single mothers may never have met some of the child’s paternal relatives or may have lost touch with them after their relationship with the child’s father ended. Alternatively, young, never married single mothers may have also lost contact with their own families because of tension over choice of romantic partners and timing of childbearing. As such, one of the goals of developing the KST was to ascertain how much single mothers knew about the child’s close kin members on both sides of the family tree.

By design, the KST asked people to report the number of aunts, uncles, and grandparents on the child’s maternal and paternal sides. While every child must have 4 grandparents, this is not the case for aunts and uncles. Therefore, it is possible for respondents to say that they do not know the number. On the maternal side, this is not an issue as only 1 woman could not give us a number for maternal uncles. The paternal side, however, presents greater challenges with 169 women (36.6%) not knowing the number of paternal
aunts and 167 (36.1%) not knowing the number of paternal uncles. Moreover, even among respondents who estimate the number of paternal aunts and uncles, the average provided is far below that for maternal aunts and uncles, suggesting that single mothers severely underreport the number of paternal aunts and uncles because they may not know they exist. Substantively, this is an important finding in that it shows the extent of disconnect between these single mothers and the paternal kin of their children. If we assume that children have on average the same number of paternal aunts and uncles as maternal aunts and uncles, we estimate that nearly three-quarters of paternal aunts and uncles are unknown to these single mothers.

For those who could be enumerated, Table 2 shows the distribution of knowing specific types of information about kin. In line with the survey design shown in Figure 1, each column shows the respective Ns for kin for whom the questions were asked. Name and survival status were asked for all named kin. If a kin member is reported as dead, the respondent is asked for age at death; if the member is alive, we collect data on current age. Finally, of those who are alive and older than 7 years, we ask about location and education and, for those aged 12 years and older, employment status.

Table 2: Type of knowledge known about kin (%)

<table>
<thead>
<tr>
<th></th>
<th>All Kin</th>
<th>Dead</th>
<th>Alive</th>
<th>Older than 7* (Potential Kin)</th>
<th>12+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>79.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survival status</td>
<td>79.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at death</td>
<td></td>
<td>22.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current age</td>
<td></td>
<td></td>
<td></td>
<td>65.7</td>
<td></td>
</tr>
<tr>
<td>Current location**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>92.7</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>71.9</td>
</tr>
<tr>
<td>Employment status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81.1</td>
</tr>
<tr>
<td>N</td>
<td>5,343</td>
<td>595</td>
<td>3,674</td>
<td>3,453</td>
<td>3274</td>
</tr>
</tbody>
</table>

* We include those whose ages are listed as unknown based on relationship status which established all these members as adults

**Was only asked if person was non-resident (N=2388)

Overall, most respondents are able to provide basic demographic information on their kin. For example, respondents were able to report on educational and employment status for 72% and 81% of kin, respectively. The question that appears to present the greatest difficulty for respondents is age. Among dead kin, we were only able to ascertain age at death for about 23% and, for those alive, current age was not available for about 35% of the sample. It is also interesting that name is not known for 21% of enumerated kin. This may not be particularly surprising in contexts where the kin relationship is more critical to establishing one’s identity than a given name. Indeed there is a long tradition of anthropology
that supports this observation (Fortes 2013; Riesman 1992). Mothers may also be aware that, for example, the child has a paternal uncle, but she may not know his name because she has never met him.

5.3. Consistency of geospatial data

While Table 2 shows that we were successful in attaining data on location for the vast majority of kin, it does not tell us how robust these data are. One of the innovative features of the KST is its attempt to capture multiple types of geo-spatial measures between the respondent and her kin. These include three self-reported or vernacular measures: travel time, cost of travel, perception of distance; and two objective measures: distance based on geo-codes of location and form of transport. Geo-codes were collected using Google Maps which allowed the interviewer and respondent to identify the location of the kin. We also collected assessments from the interviewer about the precision of the geo-coded data. Table 3 shows the bivariate relationship between vernacular and objective measures for all members who are alive, older than 7 years and not co-resident in the respondent’s household.

Table 3: Comparison of vernacular responses and objective measures of geo-spatial indicators

<table>
<thead>
<tr>
<th>Vernacular Measures</th>
<th>Objective Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel time (n=1347)</td>
<td>Kilometers</td>
</tr>
<tr>
<td>< 1 hour</td>
<td>2.20</td>
</tr>
<tr>
<td>1-3 hours</td>
<td>33.76</td>
</tr>
<tr>
<td>3-6 hours</td>
<td>95.65</td>
</tr>
<tr>
<td>6-11 hours</td>
<td>277.95</td>
</tr>
<tr>
<td>11-24 hours</td>
<td>327.76</td>
</tr>
<tr>
<td>Do you regard trip as too far? (n=1343)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>17.71</td>
</tr>
<tr>
<td>Yes</td>
<td>250.35</td>
</tr>
<tr>
<td>Don’t know</td>
<td>74.72</td>
</tr>
<tr>
<td>Cost to visit (n=1341)</td>
<td></td>
</tr>
<tr>
<td>0-49 KSH</td>
<td>0.68</td>
</tr>
<tr>
<td>55-99 KSH</td>
<td>3.78</td>
</tr>
</tbody>
</table>
There appears to be high levels of consistency between vernacular and objective measures. Longer travel times are in line with longer distances. Similarly the average distance is much greater for those reported as living too far away. Finally, the cost of transport increases with actual distance. We would expect more variation in forms of transport but the fact that longer distance, time, and cost are all associated with the use of inter-city buses is reassuring. We also tested the hypothesis that women are more likely to over-estimate vernacular measures for paternal kin because they consider them to be socially more distant than maternal kin. When we compared consistency of vernacular and objective responses by type of kin, we found no evidence of this type of bias. However, we did find that out of the 172 kin whose location is reported as “Don’t Know,” almost all are paternal kin. Taken together, this exercise suggests that vernacular measures are quite robust and, therefore, could serve as the main means of data collection if resource constraints prevent the use of Google Maps. However, geo-codes enable a level of precision not available with the more conventional vernacular measures. Moreover, they enable researchers to assess distances not only between the respondent and her relatives, but also between relatives. Finally, geocodes enable the creation of kinship maps, a highly effective means of conveying kinship structure and support. As one example of the type of in-depth analyses that can be done using these geocoded data, see Madhavan et al. (2014). In short, the decision to use Google Maps should be based on 1) level of precision needed to address research questions; and 2) practical considerations such as availability of money and equipment to collect the data.

6. Feasibility and challenges of administration
One possible criticism of the KST is its reliance on mothers’ reports of support. We found that the overwhelming majority of support comes from maternal kin. Is it possible that single mothers exaggerate the role of maternal kin and/or underreport the role of paternal kin? Their responses may be colored by their views on the value of the relationship or perhaps, even more idiosyncratic issues that might influence her responses at the time of interview. This is likely to occur when discussing the biological father of the child and, by extension, paternal kin. If the dissolution occurred under particularly

<table>
<thead>
<tr>
<th>Kinship Category</th>
<th>Distance (KSH)</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-249 KSH</td>
<td>10.36</td>
<td>Matatu</td>
</tr>
<tr>
<td>250-499 KSH</td>
<td>74.51</td>
<td>Matatu</td>
</tr>
<tr>
<td>500-999 KSH</td>
<td>116.70</td>
<td>Bus</td>
</tr>
<tr>
<td>>= 1000 KSH</td>
<td>279.79</td>
<td>Bus</td>
</tr>
<tr>
<td>Don’t know</td>
<td>314.90</td>
<td>n/a</td>
</tr>
</tbody>
</table>

A van commonly used both within cities and for long distance trips that is often cheaper than other forms of transport
acrimonious circumstances, then the mother might be more likely to underestimate the father’s support or that of his kin. Alternatively, if the mother is caught in conflict with her sisters or brothers, she might also downplay their contributions. In order to assess reliability, we administered an abridged version of the questionnaire by phone to selected kin to examine the extent of consistency between responses of mother and the corresponding kin. For example, does the mother’s report of financial contribution from her brother match what the brother says he contributes? We successfully conducted reliability interviews with 101 kin linked to 47 mothers. More than half of these reliability respondents were residing in Korogocho when we interviewed them and all but 8 are maternal kin. We found fairly high levels of reliability on responses to type of support provided. Kappa statistics showed 69.6% agreement on financial support provision, 85% for child care support and 61% for responses to the question “can you talk to KST member about a personal issue.” While this agreement is high for KST members who the mother reported as providing support, we had substantial difficulty accessing those kin who the mother reports as not providing support who tend to be biological fathers and paternal kin. We had only 7 biological fathers and only 1 paternal kin because mothers, not surprisingly, are more likely to know or would reveal contact information for those members with whom they have a good relationship and who tend to be maternal kin. Therefore, this exercise suggests a high level of concurrence among relatives in supportive relationships, which is an important finding. However, because of our limited number of interviews conducted with less engaged relatives, they tell us little about the reliability of a mother’s reports of “non-support.”

Another concern is the time needed to carry out the survey. On average, a questionnaire requires two hours to complete with some going beyond three hours. The time is directly correlated to the size of the kin network – the longer the list of enumerated kin, the longer the interview. While we limit data collection to only close kin, Kenya’s very high fertility in the not so distant past means that there are likely to be at least 3-4 aunts and uncles on paternal and maternal sides. Moreover, if the woman is older, she is likely to have older children who would also be included on the list and if she was previously married to the father, she is likely to know more information about the paternal kin. The monotony of asking a long list of questions for each member of a large kin group can be onerous. One way for the respondent to end a survey is to report the survival status of kin members as unknown. Therefore, we might expect to see a larger proportion of kin network with survival status unknown in larger kin networks. Our analysis reveals no significant difference by size of kin group. If anything, there is a marginally negative relationship between size of kin group and proportion reported unknown. While this is somewhat reassuring, it is possible that data quality suffers (e.g. more “don’t know” answers) for those members who end up at the end of long lists. We examined this possibility by comparing the proportion of each type of grandparent whose survival status is reported as “DK” (Table 4) across size of kin network. By focusing on one particular set of relationships – grandparents who always show up at the end of a roster – we are, in effect,
controlling for type of kin relationship and, therefore, able to better isolate the effects of interview length. We separate out networks of indeterminate size smaller than 10 people in order to see differences between small and large networks more clearly.

Table 4. DK responses to survival status question for grandparents by kin group size (%)

<table>
<thead>
<tr>
<th></th>
<th>Small (5-9)</th>
<th>Large (10+)*</th>
<th>Network Unknown Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal Grandmother</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Maternal Grandfather</td>
<td>23.2</td>
<td>12.5</td>
<td>16.2</td>
</tr>
<tr>
<td>Paternal Grandmother</td>
<td>88.4</td>
<td>60.6</td>
<td>91.9</td>
</tr>
<tr>
<td>Paternal Grandfather</td>
<td>91.2</td>
<td>66.2</td>
<td>93.2</td>
</tr>
<tr>
<td>Total N</td>
<td>72</td>
<td>315</td>
<td>75</td>
</tr>
</tbody>
</table>

*Large category includes those with unknown network size but had a minimum of 10 known; therefore we know that the networks have to be at least 10 people;

There is no evidence that length of survey increases the likelihood of reporting “DK” to the question on survival status in any of the grandparent categories. While the differences between the maternal and paternal sides are striking, proportions do not vary in any systematic fashion across size. Again, we find that, if anything, the proportion is actually higher in smaller kin groups suggesting that women with larger networks are more connected than those with small networks. We also asked respondents to convey any comments or suggestions about the survey at the end of the interview. Out of the 60 women who provided comments, 10 complained about the length. However, 75% reported that they found the questions easy to understand.

The KST was developed using Open Data Kit (ODK), an open source survey development software and administered on Android based tablet computers. The advantages of using ODK is that it is free and readily available and routinely being updated/improved by a community of users. In addition, it allows for fairly easy modification of the survey questions and administration protocol for Round 2 using lessons learned from Round 1. Perhaps one of its most attractive features is the relatively easy interface with Google Maps which allows the interviewer to work with the respondent to identify the exact location of the named kin. Whereas this is not particularly challenging in the Kenyan context, due in no small part to high levels of digital exposure, it should not be assumed that spatial orientation using a cartographic interface is meaningful in all contexts. Therefore, the effort taken to collect precise geocoded data, while highly appealing to researchers who no longer need to conduct time consuming post survey manual coding, may not actually produce highly reliable data. Moreover, the use of Google Maps takes up both time and bandwidth which, in the Kenyan context, come at a premium. Therefore, we would call for more
testing on this aspect of the questionnaire to 1) determine feasibility of using Google Maps and 2) to identify the optimum geospatial measures for each context. Our own analysis shown earlier suggests that vernacular data (i.e. self-reports of distance, time and cost) are consistent with objective measures based on geo-codes. However, geo-coded data offers a level of precision and flexibility that facilitates more in-depth analysis of geo-spatial factors and familial support. At a minimum, therefore, geo-coded data should be collected as one form of geo-spatial data.

Tablet computers are increasingly becoming standard features in data collection (IRIS 2011; Paudel et al. 2013) because: 1) the questionnaire can be programmed to minimize data entry error; 2) they allow direct storing of data to a cloud based server; and 3) do away with the need to carry around large amounts of paper. For this project, specifically, they enable the use of an expandable number of loops for various parts of the survey including the collection of data on kin. This would have been impossible to do using paper surveys. However, our experience with tablets revealed other types of problems that should be addressed. One, while programming can eliminate many sources of data entry error, the possibility of accidentally choosing the wrong answer when using touch screens exists and requires vigilance. Moreover, this project provides an opportunity to assess the feasibility of using such devices in high crime areas, an issue that has not garnered much attention. While the use of electronic devices for data collection has obvious advantages, it is important that we consider the ethical dimensions of exposing interviewers to physical danger from attempted robbery. The interviewers on this project voiced such concerns during the training even though all of them have intimate familiarity with the community. Even with common sense precautions, word spreads quickly in these communities that interviewers are carrying tablets which, in turn, makes them targets for robberies. Fortunately, we only lost one table to a robbery in Round One and no one was hurt, but more thinking about this issue is needed.

7. Discussion
In this paper, we have presented an innovative data collection instrument that we believe will greatly advance our ability to understand the complexity of family structure and support. It has long been recognized that households are inadequate proxies for families but few survey instruments have attempted to move beyond the households. Household rosters, while a convenient means of data collection, are unable to reflect the reality in many contexts – in both high income countries and LMICs – brought on by changing norms around family obligations, union formation and childrearing as well as pervasive economic insecurity. If we want to understand these new forms of family complexity and the effects on children’s well-being, we need better tools. The Kinship Support Tree, we believe, is one promising way forward. Its key innovations include: 1) going beyond the residential household; 2) distinguishing functional from potential kin; 3) capturing multiple geospatial measures; and 4) switching the frame of reference to children rather than the head of household. Through this project, we have uncovered a
number of important findings. One, the instrument works well in distinguishing residential from non-residential kin and identifying functional from potential kin. Two, respondents are able to enumerate and provide demographic data about almost all maternal kin of the child but encounter more difficulty when asked about the child’s paternal side. Three, vernacular responses to questions about location of non-residential kin are consistent with GPS measures. In addition, this first phases of development and testing has shown that it is possible to 1) program a complex survey instrument using open source software; 2) gather precise GIS data on kin location which seems to correspond reasonably well to perceptions of distance and time; 3) use tablet computers to collect the data in an efficient manner that minimizes errors; and 4) train interviewers to appreciate both the conceptual and practical value of the instrument. In addition, we are in the process of determining the feasibility of retaining the original sample over a 6-month period through a second round of data collection. Findings from the follow up survey (expected in the next few months) will offer important insights into the opportunities and challenges of following women and their children in highly mobile populations. Substantively, this is important because it will shed light on the extent of stability in women’s support networks.

Even though this paper is restricted to a focus on the methodological aspects of the KST, it is, nonetheless, important to highlight some key findings that are emerging from analysis of the first round of data. Perhaps the most notable finding thus far is that a large number of potential kin do not provide any support to single mothers or their children. Amongst those who do, most are maternal kin and a substantial number live outside the household. Conversely, among residential kin, a large proportion do not give support underscoring caution in equating presence and support. These are critical findings because they challenge the longstanding narrative that extended kin in the African context are available and able to provide support to women and children in need. While it is clearly premature to dismiss the role of extended kin the time probably has come to interrogate its validity particularly in contexts undergoing rapid social and economic change. More importantly, we have shown that we cannot treat the extended family model, particularly the residential component, as a valid proxy for support in examining the impact of family structure and support on children’s well-being.

While we recognize the need for further improvements to the KST instrument and more testing in sites other than Korogocho, we are encouraged by our experience thus far. If anything, the substantive findings that the analysis has revealed gives us even more motivation to consider refinements to the instrument and identify other sites for testing. Given high rates of urbanization underway in many African countries, it is not only timely but essential that we use alternative and innovative data collection tools to understand the contours of family structure and the nuances of family support. It is also not unreasonable to consider sites outside of Africa including the U.S. Inspired, in part, by Carol Stack’s seminal ethnography (1974) on the caregiving networks of low income Black residents of a midwestern town, child development scholars and family sociologists have examined the role of kinship support in African American families (Jayakody, Chatters and Taylor 1993; Taylor and Roberts 1995). However, these studies offer little insight into potential kin whereby limiting our understanding of the quantity
and quality of kin support. Moreover, these studies have not incorporated geospatial measures which limits our ability to appreciate the role of spatial location and dispersion on kinship support. Given the concerns around increasing child poverty, troubling child outcomes in health and education and the complexity of family structure particularly in low income communities, the time may be ideal to conduct a study using a modified KST instrument.
References

IRIS Center. 2011. Comparative assessment of software programs for the development of computer assisted personal interview (CAPI) applications. Report prepared by IRIS Center, University of Maryland, College Park, MD.

