GENTRIFICATION AND THE SUBURBANIZATION OF RETURNING PRISONERS

David S. Kirk
University of Oxford

Population Association of America Annual Conference

DRAFT: March 7, 2016

*Direct correspondence to David Kirk, Department of Sociology, University of Oxford, Nuffield College, New Road, Oxford OX1 1NF, United Kingdom; email: david.kirk@sociology.ox.ac.uk.
GENTRIFICATION AND THE SUBURBANIZATION OF RETURNING PRISONERS

David S. Kirk, University of Oxford

ABSTRACT
More than 600,000 prisoners are released from incarceration each year in the United States. Until recently, prisoner reentry was largely an urban phenomenon with most exiting prisoners concentrated in inner-city neighborhoods. Increasingly, however, returning prisoners are suburbanizing. For instance, whereas in 2000 roughly 50 percent of individuals released from prison in Illinois returned to Chicago neighborhoods, current data reveal that the percentage is now below 40 percent. This study aims to uncover the roots of this geographic shift in prisoner reentry, with a focus on the role of urban housing markets. In particular I ask: has the gentrification of urban neighborhoods led to a decline in the relative share of statewide prison releases residing in metropolitan neighborhoods? To answer this question, I draw upon longitudinal data from the Illinois Department of Corrections on the geographic distribution of prison releases as well as data from the U.S. Census and the American Community Survey on temporal changes in neighborhood characteristics. Findings reveal a reciprocal association between gentrification and changes in the share of returning prisoners. An increase in the relative share of statewide prison releases that a neighborhood receives is associated with a subsequent decline in home values. An increase in home values in a neighborhood is associated with a subsequent decline in the share of returning prisoners received by the neighborhood.
INTRODUCTION

One in 100 adults in the United States is currently in prison or jail, equaling over 2.2 million individuals (National Research Council 2014). A corollary statistic is the number of individuals exiting prison each year. In 1978, roughly 140,000 individuals were released from U.S. prisons. By 2008, yearly releases surpassed 735,000, representing more than a 400% increase in three decades (Carson and Mulako-Wangota 2015). Recently the number of yearly releases has declined, but the volume of releases still surpasses 600,000 each year. In total there are roughly five million formerly imprisoned individuals residing in U.S. neighborhoods (Shannon et al. 2015).

Traditionally, returning prisoners have been highly concentrated in a relatively small number of urban neighborhoods. For instance, research by the Urban Institute revealed that more than one-half of prisoners released from Illinois prisons in 2001 returned to Chicago, and one-third of these formerly incarcerated individuals were concentrated in only six community areas (La Vigne, Mamalian, et al. 2003). Similarly in Maryland, nearly 60% of prisoners released in 2001 returned to Baltimore, and 30% of these were concentrated in just six neighborhoods (La Vigne, Kachnowski, et al. 2003). However, metropolitan areas in the United States have changed considerably since the turn of the millennium. For instance, in many metropolitan areas there has been a stark rise in the relative share of Latinos, and a decline the relative size of the African-American population. Associated with this decline has been an outmigration of African-Americans to the suburbs. There has also been a substantial increase in the number of impoverished individuals living in the suburbs. Indeed, the number of poor suburbanites now outnumbers the number of impoverished city dwellers (Kneebone and Berube 2013).
This study aims to take stock of trends in the geographic distribution of returning prisoners in Illinois over the past two decades, and to explain changes in the distribution. In particular I ask: (1) Has the concentration of returning prisoners in urban areas become less dense over time? (2) If so, has there been a suburbanization of returning prisoners? (3) Has the gentrification of urban neighborhoods led to the suburbanization of returning prisoners? To answer these questions, I draw upon longitudinal data from the Illinois Department of Corrections on the geographic distribution of prison releases as well as data from the U.S. Census and the American Community Survey on temporal changes in neighborhood characteristics.

Data and Research Design

Data used in this study come from four main sources: the Illinois Department of Corrections (IDOC), the 1990 and 2000 U.S. censuses, and the 2007 – 2011 American Community Survey. ZIP code is the unit of analysis.

The IDOC data were obtained from the Illinois Criminal Justice Information Authority and consist of information on the geographic distribution (by ZIP code) of prisoners released from prisons in Illinois from fiscal year 1996 to 2013. Releases include those from new court commitments as well as re-releases from prison following a re-commitment from a parole violation. One outcome variable in the ensuing analysis is the change in the relative share of total statewide prison releases residing in a given ZIP code. It is computed by first dividing the number of released prisoners in a given ZIP code by the total number of prisoners released from an Illinois state prison in a given year, and multiplying this quotient by 100. This product represents the share of the total prison releases in a ZIP code in given year. I compute the change
in the relative share of prisoners received by a neighborhood by subtracting the relative shares across time points. Specifically, I constructed two measures: the change in the relative share from 1996 to 2002, and the change from 2002 to 2012.

Gentrification has been defined and measured in a variety of different ways in the research literature. The origination of the term “gentrification” has often been credited to Ruth Glass (1964, pp. xviii-xix), who in her study of urban change in London observed the following:

working class quarters of London have been invaded by the middle classes…Shabby, modest mews and cottages–two rooms up and two down–have been taken over, when their leases have expired, and have become elegant, expensive residences. Larger Victorian houses, downgraded in an earlier or recent period—which were used as lodging houses or were otherwise in multiple occupation–have been upgraded once again…Once this process of ‘gentrification’ starts in a district, it goes on rapidly until all or most of the original working class occupiers are displaced, and the whole social character of the district is changed.

In this definition, we find three key dimensions of gentrification: first, a period of downgrading and disinvestment of neighborhoods; second, displacement of working class residents by middle-class residents; and third, transformation of the housing stock and a rise in home values. However, one source of continuing debate is whether gentrification necessarily implies displacement and/or racial turnover of residents (see, e.g., Freeman 2005; Freeman and Braconi 2004).

Neil Smith’s (1998, p.198) definition of gentrification emphasizes the in-migration of middle-class residents but not necessarily the displacement of lower-income residents: “the process by which central urban neighborhoods that have undergone disinvestments and economic decline experience a reversal, reinvestment, and the in-migration of a relatively well-off middle- and upper middle-class population.”

In this article, I measure gentrification two different ways, and using one measure in the main analysis and the second measure in a robustness test. The primary measure of gentrification
is based on changes in logged median home values. Specifically, the measure of gentrification from 1990 to 2000 represents the change in the median logged home values in a given ZIP code between these two time points based on data from the 1990 and 2000 U.S. censuses. I similarly construct a measure of gentrification from 2000 to 2007-2011 with data from the 2000 U.S. Census and the 2007-2011 American Community Survey.¹

Statistical models include time-varying controls for a number of different ZIP code characteristics, measured with data from the 1990 and 2000 U.S. censuses: the proportion of children age 5 and younger below the poverty line, of female headed households with children, of linguistically isolated households, of owner-occupied households, of Hispanic residents, and of non-Hispanic Black residents.

Analytical Framework

Analyses follow two paths. First, I provide a visual depiction of the trends in prisoner reentry in Illinois and the geography of prisoner reentry in Chicago. As part of this descriptive analysis, I assess the spatial clustering of prisoner reentry using a global measure of the Moran’s I statistic (Anselin 1995). The local Moran’s I statistic is an indicator of spatial association which can be used to measure the extent to which neighborhoods with large concentrations of returning prisoners cluster together in the same areas of the city. It is computed as follows: ¹

¹ The secondary measure of gentrification is based on a principal components analysis of median home values, median household income, and the proportion of ZIP code residents aged 25 or higher with a bachelor’s degree or a graduate degree. I pooled data from all years into the same dataset (i.e., each ZIP code had three observations). By doing so, the factor loadings for each of the three census items do not vary across the time points, thus ensuring comparability across time. After constructing a given factor score for each ZIP code in each year, I regressed the 2000 score on the 1990 score and output the unstandardized residual. This residual represents the measure of gentrification from 1990 to 2000, where higher scores equate to higher levels of gentrification. I similarly constructed an unstandardized residual for the time period from 2000 to 2007-2011. With these secondary measures of gentrification, I estimated the same cross-lagged path models that I did in the main analysis, and find that my results are robust to the two different ways I operationalized gentrification.
\[I_i = \frac{Z_i}{m_2} \sum_j W_{ij} Z_j, \]

where \(m_2 = \frac{\sum Z_i^2}{N} \); \(Z_i \) and \(Z_j \) represent the deviations, for neighborhoods \(i \) and \(j \), from the mean share of former prisoners for neighborhoods throughout the city; and \(W_{ij} \) is a matrix of spatial weights which designates a neighborhood \(j \) as contiguous with a focal neighborhood \(i \) if it is adjacent to the north, west, south, or east of the focal neighborhood. A high value of \(I_i \) indicates that a given neighborhood is clustered near other neighborhoods with high proportions of formerly incarcerated individuals.

The global Moran’s statistic can be used to assess the extent to which prisoner reentry is clustered or dispersed across the City of Chicago in aggregate, whereas the local version of the statistic is useful for identifying where spatial clustering may be located in the city. The global statistic represents the sum of the local measures.

In one of the descriptive analyses to follow, I will examine the temporal trend in the global Moran’s \(I \). A z-score can be used to assess the extent to which a given attribute, in this case the number of returning prisoners per 100 residents in a neighborhood, is spatially clustered. A statistically significant positive z-score would reveal that neighborhoods with high rates of returning prisoners tend to cluster together in the same parts of the city and that neighborhoods with relatively low rates of returning prisoners cluster together. A statistically significant negative z-score indicates dispersion—neighborhoods with high rates of returning prisoners are not located close to each other, and that neighborhoods with low rates of returning prisoners are found far away from other low rate neighborhoods. A nonsignificant z-score would suggest that the pattern of prisoner reentry is spatially random.
Following this descriptive analysis of the temporal and spatial patterns of prisoner reentry in Illinois, I turn to cross-lagged path models to examine the relationship between prisoner reentry and gentrification. Whereas the gentrification of neighborhoods likely reduces the available housing opportunities for returning prisoners, the relationship may be reciprocal. In the short term, neighborhoods on the receiving end of many former prisoners may not be attractive sites of gentrification and may face declining property values (although those neighborhoods in close proximity to central business districts and other sites of employment opportunities may eventually represent attractive investment opportunities for homeowners and real estate developers).

RESULTS

Figure 1 depicts the trends in prisoner release in Illinois, based on data from the National Prisoner Statistics Program collected by the Bureau of Justice Statistics.\(^2\) Figure 1 reveals almost continuous growth in the number of prisoners released each year from the late 1970s until 2006.\(^3\) Growth in prison releases accelerated in 1990 and again in 2001. From the late 1970s until the peak of releases in 2006, the number of releases increased 500%, well surpassing the percentage growth in releases nationwide. Trends in admissions follow a similar trajectory, which is indicative of the churning of offenders between prison and select urban neighborhoods.

This period of growth in the size of the reentry population has been marked by a suburbanization and exurbanization of prisoner reentry. As noted, research by the Urban Institute found that in 2001, roughly one-half of prison releases in Illinois returned to Chicago (La Vigne

\(^3\) Releases include both conditional (e.g., parole) and unconditional (i.e., expiration of the prison term) releases, but exclude prison exits from death, escape, and other infrequent reasons.
et al. 2003). As seen on the right axis in Figure 2, the percentage of prison releases returning to the City of Chicago declined incrementally between 1996 and 2005, and then declined dramatically between 2005 and 2009. By 2013, fewer than 40% of exiting prisoners in Illinois were returning to Chicago. This decline in the percent of Illinois prison releases returning specifically to the city limits of Chicago results from two trends (see Figure 3): the decline in the percent of Illinois prisoners returning to the wider Chicago-Naperville-Elgin core based statistical area (CBSA) and the decline in the percent of returnees to the Chicago-Naperville-Elgin CBSA that reside in the Chicago city limits. That being said, the volume of prison releases to Chicago was roughly the same in 2013 as in 1996—about 12,000 prison releases—despite the relative shift of returning prisoners to areas outside of the Chicago city limits. This finding occurs because, as demonstrated in Figure 1, the total number of prison releases increased so dramatically over the time period.

[FIGURES 1 – 3 ABOUT HERE]

Coinciding with this geographic shift in prisoner reentry is a decline, albeit a bumpy one, in the spatial clustering of prisoner reentry in Chicago. Figure 4 displays the trends in a global measure of spatial autocorrelation, Moran’s I. Comparing the z-scores over time provides an indication of whether spatial clustering becomes more or less intense. In all years, we see a z-score well above 3.09 (i.e., where the p-value = .001), indicating that prisoner reentry is far more spatially clustered than would be expected if underlying spatial processes were random. However, the z-scores fluctuate. Between 1996 and 1999, the overall spatial clustering of prisoner reentry declines in Chicago. Between 1999 and 2003, it increases a substantial amount. During this period, the number of releases to Chicago increased from 12,288 to 17,253, yet the
increase appeared to be spatially concentrated. Starting in 2003, the spatial clustering declines almost continuously through 2013, with the exception being an uptick in 2008.

[FIGURE 4 ABOUT HERE]

The global measure of Moran’s I, which represents the sum of the local Moran’s I for each neighborhood in Chicago, reveals a downward trend in the spatial clustering of prisoner reentry in Chicago. Figure 5 maps the local Moran’s I, specifically highlighting those sections of the city where there are neighborhoods with high rates of prisoner reentry clustered close together (i.e., “High-High”), as well as other combinations of clustering (High-Low, Low-High, and Low-Low). Former prisoners are not evenly spread across Chicago. In each year the geographic distribution of returning prisoners is highly concentrated. In 1996, the clustering of former prisoners was mostly isolated to the neighborhoods west of downtown. These community areas include: Austin, West Garfield Park, East Garfield Park, Humboldt Park, North Lawndale, and South Lawndale. In 2002, we see the same spatial clustering west of downtown, but we also see a clustering on the South Side of Chicago, in community areas such as West Englewood, Englewood, and Grand Crossing, as well as on the southern border of the city in Riverdale.

Moving to 2013, which Figure 3 indicated was the year with the lowest level of aggregate spatial clustering between 1996 and 2013, we see that the spatial clustering west of downtown Chicago has dispersed to some extent and pushed east. We also see that the spatial clustering in the middle of the South Side has dissipated, and that the clustering near the southern border of the city has grown to include the community area of South Deering. Overall, in 1996, 9% of Chicago neighborhoods were neighborhoods with high rates of prisoner reentry located adjacent to other high rate neighborhoods. In 2002, it had increased to 14% of neighborhoods. In 2013, it declined to 8% of neighborhoods. The west side of Chicago has and continues to be the place of residence
for significant clusters of former prisoners, but with some dispersion between 2002 and 2013. However, the patterns of prisoner reentry on the South Side changed considerably over the course of the 1996 to 2013 time period. This may be due, in part, to gentrification and the demolition of thousands of units of high-rise public housing such as the Robert Taylor Homes in and around the Englewood community area.

[FIGURE 5 ABOUT HERE]

Figure 6 presents the conceptual model of the cross-lagged path analysis I estimate to examine the relationship between gentrification and prisoner reentry. In this model, various exogenous features of neighborhoods (i.e., the Time 1 and Time 2 covariates) are used to predict gentrification and the changing share of returning prisoners in a neighborhood. These predictors include the proportion of children age 5 and younger below the poverty line, of female headed households with children, of linguistically isolated households, of owner-occupied households, of Hispanic residents, and of non-Hispanic Black residents. Paths a and b represent the within-time point correlations between gentrification and prisoner reentry. Paths c and d represent stability coefficients, for gentrification and prisoner reentry respectively. These paths reflect the stability in gentrification and prisoner reentry over-time. Including these stability coefficients allows me to account for prior variation in my two outcomes when estimating the reciprocal effects of gentrification and prisoner reentry.

The paths e and f are the primary interest of the study and will reveal the association between gentrification and changes in the relative share of returning prisoners as well as the association between the changing share of returning prisoners and gentrification, net of the lags of these measures and other covariates. This conceptual model is implemented using the Structural Equating Modeling (SEM) Builder in Stata.
Table 1 presents results from the cross-lagged estimates of the conceptual model depicted in Figure 6, and Figure 7 visually displays the standardized coefficients for the within-time correlations (i.e., paths \(a\) and \(b\)), autoregressive paths (\(c\) and \(d\)), and cross-lagged paths (\(e\) and \(f\)) found in Table 1. The within-time correlation at time 1 (path \(a\)) reveals little concurrent relationship between gentrification and prisoner reentry after controlling for other predictors in the model. However, I do find a significant within-time correlation at time 2 (path \(b\)). Moreover, I may also find a cross-lagged effect, if the consequences of gentrification and prisoner reentry for neighborhoods unfold over time.

The autoregressive path \(c\) from gentrification at time 1 to time 2 reveals a nonsignificant degree of stability in inter-neighborhood variation in gentrification (standardized coefficient = -.083). Those ZIP codes with large increases in home values from 2000 to 2007-2011 were not generally the ones that had the largest increases during the previous decade.

The autoregressive path \(d\) from the change in the share of returning prisoners at time 1 to time 2 is significant and negative (standardized coefficient = -.540). ZIP codes with an increase in its relative share of returning prisoners in the 1990s subsequently saw a decline in share between 2002 and 2012.

The cross-lagged path \(e\) reveals a significant negative association between gentrification at time 1 and changes in the share of returning prisoners at time 2. Hence, it appears that the gentrification of a neighborhood yields a decline in the relative number of returning prisoners in a neighborhood. Instead, returning prisoners take up residence in other neighborhoods.

The cross-lagged path \(f\) reveals a significant negative association between changes in the share of returning prisoners at time 1 and gentrification at time 2. At least in the near-term,
increases in the relative share of returning prisoners received by a neighborhood undermines property values. Whether this association would hold in a longer-term analysis is a question worthy of exploration.

[TABLE 1 AND FIGURE 7 ABOUT HERE]

DISCUSSION

This article has presented a descriptive and inferential assessment of the changing geographic distribution of returning prisoners in Illinois. While returning prisoners continue to inhabit urban cores in large proportions, the past decade in particular has been marked by a considerable geographic shift in the residential location of returning prisoners. Given housing market dynamics such as the demolition of public housing and gentrification, this shift is unsurprising. Results of this analysis, while still preliminary, reveal a reciprocal relationship between gentrification and changes in the relative share of returning prisoners received by a given neighborhood. On the one hand, gentrification of neighborhoods presents a barrier to residence for returning prisoners. On the other hand, in the near-term increases in the relative share of returning prisoners received by a neighborhood undermines property values and therefore the immediate prospects of gentrification. This finding is consistent with research on the inverse relationship between crime and property values (for a discussion, see Kirk and Laub 2010).

However, it may be the case that neighborhoods presently inhabited by many former prisoners become ripe for future investment. Indeed, Hoover and Vernon’s (1959) life-cycle model of neighborhood change predicts such a progression. In this model, neighborhoods undergo a process of change characterized by five stages: 1) development, 2) transition, 3) downgrading, 4) thinning out, and 5) renewal. During the first stage, single family homes are developed, which then leads to increasing density and higher socioeconomic status during the
transition stage. Downgrading and thinning out (i.e., population loss) then occur for a variety reasons, such as the changing economic conditions or white flight. Finally, renewal and gentrification occur, as middle-income residents are drawn to relatively cheaper housing prices. To the extent that neighborhoods are “downgraded” through the proliferation of criminal activity, renewal may eventually result.

To the extent that returning prisoners are moving outside of urban cores in the United States because of gentrification, high rents, and other housing market dynamics, there are potentially major ramifications. For instance, social services tend to be concentrated in urban cores, and provide services crucial to the rehabilitation of former offenders. The suburbanization of returning prisoners to communities further away from central cities could have the effect of making it more challenging for ex-prisoners to access services needed to reduce their likelihood of reoffending. In fact, recidivism rates in the United States are essentially unchanged over the past decade despite unprecedented spending on incarceration and other strategies aimed at criminal deterrence (Langan and Levin 2002; Durose, Cooper, and Snyder 2014). Inattention to the consequences of the geographic shift in the distribution of returning prisoners, and to the challenges of housing former prisoners more generally, may render existing efforts to reduce criminal recidivism largely inadequate.
REFERENCES

Figure 1. Prison Releases in Illinois, 1978–2013

Source: Bureau of Justice Statistics, National Prisoner Statistics
Figure 2. Number and Percent of Illinois Prison Releases Returning to the City of Chicago, 1996–2013
Figure 3. Percent of Illinois Prisoners Returning to the Chicago-Naperville-Elgin CBSA
Figure 4. Z-Score for Global Moran’s I Measure of the Spatial Clustering of Returning Prisoners in Chicago Neighborhoods
Figure 5. Local Moran’s I Measure of the Spatial Clustering of Returning Prisoners in Chicago Neighborhoods across Three Points: 1996, 2002, and 2013
Figure 6. Cross-Lagged Path Model: Reciprocal Effects Between Gentrification and Prisoner Reentry

- **Time 1**
 - Gentrification (1990 to 2000)
 - Share of Returning Prisoners (1996 to 2002)
 - Covariates

- **Time 2**
 - Gentrification (2000 to 2007-2011)
 - Share of Returning Prisoners (2002 to 2012)
 - Covariates

Variables and Paths:
- a: Effect of Time 1 Gentrification on Time 1 Prisoner Reentry
- b: Effect of Time 2 Gentrification on Time 2 Prisoner Reentry
- c: Effect of Time 1 Gentrification on Time 2 Gentrification
- d: Effect of Time 1 Prisoner Reentry on Time 2 Prisoner Reentry
- e: Effect of Time 2 Prisoner Reentry on Time 1 Gentrification
- f: Effect of Time 1 Covariates on Time 2 Prisoner Reentry
Figure 7. Cross-Lagged Path Model Results: Gentrification and Prisoner Reentry

Time 1

Gentrification (1990 to 2000)

Share of Returning Prisoners (1996 to 2002)

Time 2

Gentrification (2000 to 2007-2011)

Share of Returning Prisoners (2002 to 2012)

-.083

-.143*

-.105*

-.540*

-.140*
Table 1. Cross-Lagged Path Models of Gentrification and Prisoner Reentry

<table>
<thead>
<tr>
<th>Change in Logged Home Values, 1990 to 2000 (Time 1)</th>
<th>b</th>
<th>(SE)</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poverty Rate, 1990</td>
<td>0.109</td>
<td>(0.444)</td>
<td>0.076</td>
</tr>
<tr>
<td>Female-headed Household w/ Kids, 1990</td>
<td>3.809</td>
<td>(1.191) ***</td>
<td>0.906</td>
</tr>
<tr>
<td>Owner-occupied Housing, 1990</td>
<td>0.306</td>
<td>(0.123) *</td>
<td>0.290</td>
</tr>
<tr>
<td>Linguistic Isolation, 1990</td>
<td>0.308</td>
<td>(0.528)</td>
<td>0.063</td>
</tr>
<tr>
<td>Proportion Hispanic, 1990</td>
<td>0.187</td>
<td>(0.197)</td>
<td>0.094</td>
</tr>
<tr>
<td>Proportion Non-Hispanic Black, 1990</td>
<td>-0.470</td>
<td>(0.109) ***</td>
<td>-0.525</td>
</tr>
<tr>
<td>Constant</td>
<td>0.010</td>
<td>(0.110)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change in Share of Returning Prisoners, 1996 to 2002 (Time 1)</th>
<th>b</th>
<th>(SE)</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poverty Rate, 1990</td>
<td>-0.806</td>
<td>(0.308) **</td>
<td>-0.416</td>
</tr>
<tr>
<td>Female-headed Household w/ Kids, 1990</td>
<td>-2.484</td>
<td>(1.798)</td>
<td>0.435</td>
</tr>
<tr>
<td>Owner-occupied Housing, 1990</td>
<td>-0.288</td>
<td>(0.195)</td>
<td>-0.201</td>
</tr>
<tr>
<td>Linguistic Isolation, 1990</td>
<td>-1.236</td>
<td>(0.676)</td>
<td>-0.187</td>
</tr>
<tr>
<td>Proportion Hispanic, 1990</td>
<td>0.235</td>
<td>(0.437)</td>
<td>0.087</td>
</tr>
<tr>
<td>Proportion Non-Hispanic Black, 1990</td>
<td>0.531</td>
<td>(0.304)</td>
<td>0.437</td>
</tr>
<tr>
<td>Constant</td>
<td>0.361</td>
<td>(0.187)</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change in Logged Home Values, 2000 to 2007-11 (Time 2)</th>
<th>b</th>
<th>(SE)</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in Logged Home Values, 2000 to 2000</td>
<td>-0.048</td>
<td>(0.042)</td>
<td>-0.083</td>
</tr>
<tr>
<td>Change in Share of Returning Prisoners, 1996 to 2002</td>
<td>-0.044</td>
<td>(0.023) *</td>
<td>-0.105</td>
</tr>
<tr>
<td>Poverty Rate, 2000</td>
<td>-0.076</td>
<td>(0.144)</td>
<td>-0.073</td>
</tr>
<tr>
<td>Female-headed Household w/ Kids, 2000</td>
<td>1.214</td>
<td>(1.260)</td>
<td>0.152</td>
</tr>
<tr>
<td>Owner-occupied Housing, 2000</td>
<td>-0.089</td>
<td>(0.065)</td>
<td>-0.140</td>
</tr>
<tr>
<td>Linguistic Isolation, 2000</td>
<td>0.747</td>
<td>(0.226) ***</td>
<td>0.364</td>
</tr>
<tr>
<td>Proportion Hispanic, 2000</td>
<td>-0.086</td>
<td>(0.087)</td>
<td>-0.106</td>
</tr>
<tr>
<td>Proportion Non-Hispanic Black, 2000</td>
<td>0.028</td>
<td>(0.056)</td>
<td>0.059</td>
</tr>
<tr>
<td>Constant</td>
<td>0.477</td>
<td>(0.060) ***</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change in Share of Returning Prisoners, 2002 to 2012 (Time 2)</th>
<th>b</th>
<th>(SE)</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in Logged Home Values, 1990 to 2000</td>
<td>-0.276</td>
<td>(0.118) *</td>
<td>-0.143</td>
</tr>
<tr>
<td>Change in Share of Returning Prisoners, 1996 to 2002</td>
<td>-0.767</td>
<td>(0.377) *</td>
<td>-0.540</td>
</tr>
<tr>
<td>Poverty Rate, 2000</td>
<td>-1.497</td>
<td>(0.408) ***</td>
<td>-0.435</td>
</tr>
<tr>
<td>Female-headed Household w/ Kids, 2000</td>
<td>2.758</td>
<td>(4.313)</td>
<td>0.103</td>
</tr>
<tr>
<td>Owner-occupied Housing, 2000</td>
<td>0.225</td>
<td>(0.256)</td>
<td>0.106</td>
</tr>
<tr>
<td>Linguistic Isolation, 2000</td>
<td>0.987</td>
<td>(0.785)</td>
<td>0.144</td>
</tr>
<tr>
<td>Proportion Hispanic, 2000</td>
<td>0.137</td>
<td>(0.192)</td>
<td>0.050</td>
</tr>
<tr>
<td>Proportion Non-Hispanic Black, 2000</td>
<td>-0.112</td>
<td>(0.203)</td>
<td>-0.069</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.065</td>
<td>(0.255)</td>
<td></td>
</tr>
</tbody>
</table>

Within-time paths

<table>
<thead>
<tr>
<th>Change Home Value${t1}$ ↔ Change Share Ret. Prisoners${t1}$</th>
<th>b</th>
<th>(SE)</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.005</td>
<td>(0.004)</td>
<td>-0.124</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change Home Value${t2}$ ↔ Change Share Ret. Prisoners${t2}$</th>
<th>b</th>
<th>(SE)</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.005</td>
<td>(0.002) **</td>
<td>-0.140</td>
</tr>
</tbody>
</table>

Notes: N = 275.

* p<.10 * p<.05 ** p<.01 *** p<.001 (two-tailed test).