Living arrangements of older persons in 1987-2035 in Finland: trends by age, sex and educational attainment

Pekka Martikainen¹, Mike Murphy², Heta Moustgaard¹, Janne Mikkonen¹

¹Population Research Unit, Department of Social Research, University of Helsinki.
²Department of Social Policy, London School of Economics

Correspondence:

Pekka Martikainen
Population Research Unit
Department of Social Research
P.O.Box 18
FIN-00014 University of Helsinki
Finland
Tel 358-9-191 23889; Mobile 358-44-286 1946
Fax 358-9-191 23967
e-mail: pekka.martikainen@helsinki.fi

Acknowledgements:

This work was supported by the Academy of Finland.
ABSTRACT

Background: Changes in household structure may have a major impact on the future care and well-being of older people. We evaluate changes in living arrangements of 65+ Finnish men and women from 1987 to 2011 and project living arrangements to 2035 by education level.

Methods: An 11% longitudinal sample of Finns aged 40 years and older drawn from the population registration data. We estimate proportions in various living arrangements and multistate life table estimates of years lived in particular states. Projections are based on dynamic transition probability forecasts in LIPRO with constant and variable rates.

Results: Women more than men tend to live alone at older ages. These proportions are likely to start to decline slowly among women, particularly at 80+, but increase or stabilize among men. Apart from living with a partner, other living arrangements are growing increasingly rare. The number of basic educated older people is declining rapidly. Educational differences in living arrangements are modest among women, but among men living with a partner is more common among the higher educated.

Conclusions: Future living arrangements of older people are strongly determined, in particular, by past partnership behavior and future changes in mortality. If life expectancy differences between men and women continue to converge, so will sex differences in the remaining life spent living with a partner.
Introduction

While the growth of the elderly population is both inevitable and predictable, the experience of old age is changing rapidly. Changes in living arrangements and family forms as well as cohorts’ changing experiences of socioeconomic environments over the life-course will change the experience of old age and have a substantial impact on the well-being, health and care needs of the elderly population. For example, increasing proportion living with a partner and higher educated may provide major cost savings to the individual and the society as a whole.

Household characteristics have a significant impact on the availability of and access to social support and integration, informal care and social control and are associated with health and long term care use. In particular, before the onset of severe disability towards the end of life, intensive elderly care needs are mostly met by informal care, most of which is provided by co-resident spouses or partners, if available. In addition, living arrangements have significant implications for the financial well-being of elderly citizens. Bereavement and living alone are among the most significant predictors of financial difficulties in old-age. Also educational differences in health and well-being are well established findings and these effects continue through adulthood and old age. Understanding past trends and future changes in the living arrangement and educational composition of the older populations is thus of increasing scientific and policy importance.

In the past three decades living alone among the 65+ has increased dramatically in developed countries (National Institute on Aging 2012). However, with changing mortality and marriage patterns of previous generations the proportion of women living with a partner has stabilised or started to increase. Simultaneously other living arrangements – e.g. living in multigenerational households – have decreased dramatically. These trends are most pronounced in North-West European and English speaking countries. Household projections indicate that by 2030-2040 the overall number of households will increase while the average household size will decrease (e.g. Christiansen & Keilman 2013, OECD 2011). A comparative study of nine European countries on marital status suggests that as the populations of Europe are rapidly ageing the proportion of women living as married will increase considerably (Kalogirou & Murphy 2006).

However, only relatively little evidence exists on the past development and possible future prospects of living arrangements among the old-old, those aged 80+. Past and future demographic and social changes may have unexpected and difficult to foresee effects on the living arrangements of the elderly: for example, converging male and female life-expectancies may lead to a postponement of widowhood and living alone among women but an increase among men. Furthermore, little is known about how education determines and modifies changes in living arrangements in ageing populations either in the past or how these may evolve in the years to come. Past trends in living arrangements are not well understood and household projections of future living arrangements of the elderly – particularly at old-old ages when health problems and long-term care needs are most pressing – are not available for most European countries. Largely this is because of lack of reliable longitudinal data on nationally representative samples on elderly living arrangements.

The present study aims to fill these gaps in the knowledge by evaluating changes in the living arrangements of Finnish men and women aged 65 years and older for a 50-year period. More specifically, we aim to: (1) evaluate past changes in living arrangements by sex and age from 1987 to the present day, (2) project living arrangements to 2035 on the basis dynamic transition probability based forecasting methods and (3) to assess educational differences in past trends and future prospects of living arrangements.

These analyses are based on high quality annual population registration data on living arrangement transitions broken down by age, sex and education, with large sample size, no self-report bias and practically no loss to follow-up. The results will be presented as proportion in various living arrangements for the period 1987-2035 and life table estimates of years lived in different states.
Data and methods

Data

We used a linked register-based 11% random sample of the population permanently residing in Finland at the end of any of the years between 1987 and 2011, obtained from the Statistics Finland longitudinal population data file. Because of data-protection regulations, Statistics Finland does not provide individual-level data records for the whole population. Statistics Finland used unique personal identification codes to link information from administrative registers regarding official domicile, age and marital status, educational attainment and vital status. Analyses of past trends and projections were for persons aged 65 years or more. However, in order to have information on the population characteristics of people that age to 65+ over the projection period 2012-2035 we extracted information from all those aged 40+ in 2012.

Measurement of household structure and education was at the end of each year 1987-2011. The unit of analysis we used for defining living arrangements was the household. We defined living arrangements in the following way: (1) living with a spouse or a cohabiting partner (with or without other family members), (2) living alone, (3) living in other kinds of private households (e.g., with children or other adults), (4) living in non-private households (e.g. institutions). Cohabiters were defined by Statistics Finland as persons living in the same dwelling, aged 18 or over, of different sex, not being siblings and with an age difference not exceeding 15 years. Same sex couples were not identified.

Educational categories were based on the highest completed educational degree or certificate. It was coded into three categories: (1) basic education lasting 9 years or less, (2) secondary education lasting 10-12 years, and (3) tertiary education lasting 13+ years. We use educational attainment as the basic measure of socioeconomic status because it is consistently measured for all persons. Furthermore, because educational qualifications are almost exclusively obtained before the age of 40-49 years, it is also relatively safe to project the educational distribution of the 65+ population for the next 25-years, under the assumption that no further educational qualifications are obtained at advanced ages.

Methods

Presentation of results

The results for both past trends and projections are provided in the following three ways. First, we present absolute numbers of persons by age, sex and period for selected characteristics of interest in the form of population pyramids (we truncate the presentation at 99 years as numbers and rates become erratic after that age). Second, we present age-adjusted proportions of people in different living arrangements in two broad age-group (65-79, 80+), sex and period. Third, we calculate remaining life-expectancy at age 65 by living arrangement, age, sex and period from multi-state life tables using the observed or the projected transition probabilities as input. More detail of these methods see Preston et al. (2001).

Living arrangement projections 2012-2035

We use a multistate demographic model for these projections; the LIPRO Model of Van Imhoff and Keilman (1991), which starts with a base population and applies appropriate assumed future transition rates to this population.

Since we concentrate on projections up to 2035 of those aged 65 and over, we have included those aged 40 and over in 2011. We do not need to consider younger ages in detail, since they are not members of the cohorts of interest, although they may have small residual effects in that, for example, the possibility of a non-partnered person becoming partnered depends on the total number of potential partners of the opposite sex, or the death of a partnered person under age 40 may lead to a change of the living arrangements of the surviving partner who is over age 40. Such effects are likely to be small since our analyses are concerned with populations with average ages of about 80.

For projecting the future population aged 65 and over for the three educational level groups by household status, the base year data required are population numbers broken down by sex, single years of age, living, and education. The second requirement for making projections is data on both internal transitions between household states and external transitions of mortality by household status and how these...
evolve. LIPRO estimates transitions (jump intensities) by household status, sex and age using 2011 populations as denominators and change in living arrangements (or death) measured in the population register 12 months later as numerators. We exclude the small number of cases for which no information was available at the second time point for reasons such as emigration.

We produce two sets of findings. The first is based on continuing the rates observed in the year 2011 to the end of 2035 (constant transition rates). This model shows the impact of demographic history due to changes in population structure as the baby boom generation moves into the 65+ group. The second set uses transition rates that continue the trends observed in the period leading to 2011, therefore also allowing for changes in household behavior and mortality (variable transition rates).

Statistical modelling procedures of transition rates

To obtain our second projection that allows rates to change in the future we need to obtain estimates of future transition rates. We use a flexible regression modelling approach to estimate the main trends and level in mortality and household change rates, which uses the available past data from 1987 to 2011 efficiently and treats all transitions consistently within a single framework. We fitted a series of Generalised Additive Models (GAMs) (Hastie and Tibsharani, 1990) to each transition for those aged 40 and over for each sex and educational group. Therefore the model is an extension of a standard GLM, but with the added flexibility of not pre-specifying the form of the dependence with age or time and it has been used in a number of different areas in epidemiology (Schimek, 2009).

The GAM Poisson regression model is:

$$\log(n_{at}/p_{at}) = s(a) + s(t) + e_{at}$$

where \(n_{at}\) is the number of events and \(p_{at}\) is the population at risk at age \(a\) in year \(t\); \(s(a)\) and \(s(t)\) are smooth non-parametric curves with no pre-specified form so that the data can ‘speak for themselves’, and \(e_{at}\) is a random error term. We fit the \(\log(p_{at})\) term as an offset. The transition rates \(n_{at}/p_{at}\) can refer to either household transition rates or mortality rates. Separate models are fitted in each education group to each sex for mortality (separately for each of the four household states) and every household transition type in the period 1987 to 2011. Thus a common framework for household change is employed. These derived rates minimize problems of the original data due to small numbers and some anomalies in occasional years, and therefore provide a better basis for forecasting. We do not use more complex models such as those containing interactions between age and time. There was no evidence that these would substantially alter the results and we have no clear theoretical model to expect a particular departure from constant values across all ages. For example, mortality has been extensive analyzed but there is no clear expectation that, for example, some age groups are likely to improve more rapidly than others. Finally we are interested mainly in cross-sectional values at different time points, which tends to average out cohort differences. We estimate the annual rate of change of these rates by calculating the average value over the past five years, 2006 to 2011, and we assume that these current trends will persist for the next 25 years or so.

Note that we do not include any constraints in our models, such as those found in marital status projections where, for example, the total number of men who marry must equal number of women who do so in any time period. Since we are concerned with a subset of the population, those above age 40, such constraints do not exist. In addition, for example, a woman with lower education who died could lead to her surviving highly educated partner living alone, but we do not have data on the stocks and flows for joint educational characteristics of all household members that will be necessary to include such linked events (Van Imhoff and Keilman, 1991). We did, however, check the results to ensure that the results are as expected: for example, the numbers of men and women living as partners would be expected to move in the same general way although the numbers will not be equal since on average men tend to live with women slightly younger than themselves so that the numbers above an age such as 40 or 65 will not be equal.

Results

Past trends and future prospects of population structure by education
The number of 65-79 year olds and particularly the 80+ group has increased rapidly and will continue to increase rapidly in the next 25 years or so (Figure 1). The large baby-boom cohorts born after 1945 have just entered the 65+ population and will increasingly contribute – together with rapidly declining mortality – to the large increase in the 80+ population after 2025.

The rapid expansion of the educational system in the immediate post-war period is increasingly observed in the educational distribution of the population aged 65 years and over. Based on constant rates our projections show a very strong decline in the number of Finns with basic education only. The ageing of more recent and better educated birth cohorts will first be seen in the educational qualifications of those aged 65-79 and by 2035 also among the 80+. At the end of the projection period only a small minority of Finns will have basic education only.

Figure 1.

Past trends in living arrangements

At ages 65-79 years about 75% of men live with a spouse (Figure 2). This proportion decreased slightly from 1987 to 2011. At the same time living alone has increased slightly while other living arrangements have declined. Changes have been much more marked among women with the proportion of those living with a partner increasing from about 35% to 55%, while living alone has declined slowly and living in other households has declined rapidly. The low levels of living with a partner in 1987 reflects the severe shortage of men in those age groups due to wartime losses and sex-selective emigration.

Among men aged 80+, living with a partner increased, with about 60% living with a partner in 2011. Among women aged 80+, living with a partner and living alone have both increased. However, among women living alone is the most common living arrangement at about 65%. The proportion of women living alone doubled, while the proportion living as un-partnered in other household types (mainly with adult children) or on non-private households halved.

These changes have been relatively similar across educational groups among both men and women (Table 1). However, both better educated men and women were about 10% points more likely to live with a spouse than basic educated men in the period 1987 to 2011.

Figure 2.

Table 1

Appendix Figure 1.

Constant rates projection of living arrangements

Our constant rates household projection is based on the last observed annual transition rates between the private household statuses, non-private households and mortality for 2010-2011. The effects of migration are at these ages negligible and have been excluded. Constant rates projection does not allow for demographic trends to continue into the future; for example, mortality decline and slowly converging sex differences in mortality would be expected to attenuate further declines in living alone. The future trends in household structure in the constant rates projection will thus be driven by the replacement of older birth cohorts with more recently born cohorts only.

The constant rates projection indicates that from the early 2010s onwards (Figure 2; solid line after 2011) the increasing proportion of women aged 65-79 years living with a partner will stabilise in mid-2030s to about 55% and about 40% will live alone. Also among men partnership proportions are expected to decline in this age-group, but among men also proportions living alone will continue to increase moderately. For women aged 80+, the proportion living with a partner is still likely to increase and conversely the proportion living alone to decrease. For men, however, the proportion living with a partner is expected to decline slightly and stabilize at about 60% and living alone slightly below 30%.

As noted earlier overall differences in living arrangements are relatively small with the better educated having somewhat higher levels of living with a partner. However, better educated men and women are expected to enjoy lesser declines or even increases in the proportion living with a partner till 2035. For
example, the proportion living with a partner is expected to increase slightly for 80+ men while it is expected to decline moderately among intermediate educated and strongly for basic educated men, so the difference between groups is increasing over time.

Variable rates projection of living arrangements

Our variable rates projection allows transition rates to change over the projection period and are based on extrapolation of past observed rates (for more detail see the methods section). For the purposes of this application he most significant rates influencing the results are those related directly or indirectly to mortality; differential mortality rates will directly underlie differential exit from various living arrangements such as the death of partner will strongly influence transitions from living with a partner to living alone. Partnership breakdown rates and migration rates are of much lesser volume and thus of lesser significance.

The main results of the variable rate projections for 2012-2035 are presented in Figure 2 (dashed lines). As compared to the constant rate projection the differences are relatively modest. The main difference between the two projections is that the variable rates projection will lead to larger declines in the proportion of older women living alone than the constant rate projection. The variable rate projection will also lead to smaller but opposite changes in the proportion of men living alone.

Life expectancy by living arrangement at age 65 and their changes

The transition rates between living arrangement categories and death define life expectancy in the various living arrangement states (Table 2). Overall, life expectancy at age 65 is higher among women than men, but this gap has narrowed from 1987 to 2011 and with the variable rates projection is expected to narrow further by 2035. This is mainly because the projected life expectancy increases among women are smaller than among men. We also observe systematic educational differences in life expectancy that are consistent with previous Finnish studies (Martikainen et al 2013).

Of the remaining life expectancy at age 65 women could expect to live about 40% with a partner if she experienced 1987 rates; with this proportion increasing slightly for 2011 and 2035. Among men these proportions were much higher with 1987 rates in all educational groups, but have declined slowly among the basic and secondary educated and quite markedly among the tertiary educated. Proportions of life spent as partnered have been rising in all periods apart from men aged 65 to 79. The proportion of partnered women 80+ over shows a threefold increase between 1987 and 2035 reflecting the impact both of more favourable sex ratio at age 65 and reduced mortality differentials from age 65.

Conversely, the much longer life expectancy of living alone among women as compared to men has narrowed somewhat. Life expectancy in other living arrangements – e.g. living with children or in non-household arrangements - is of lesser magnitude; about 10% of total life expectancy at age 65 among men and slightly more among women in all educational groups and continue their long-term decline.

Table 2.

Discussion

Summary of the main findings

We evaluated changes in the living arrangements of Finnish men and women aged 65 years and more for a period of almost 50 years. The analysis consists of a detailed examination of past trends in living arrangements over a 25-year period from 1987 to 2011 and a subsequent projection to 2035. We show that women more than men tend to live alone at older ages; about 40% and 60% for women aged 65-79 and 80+ respectively, and about 20-30% among corresponding men. These proportions are likely to start to decline slowly among women but increase among men under 80. Other living arrangements are becoming increasingly rare. Because of major changes in the access to further education in the cohorts ageing to 65+ the number of basic educated older people is declining rapidly. Educational differences in living arrangements are small among women, but among men living with a partner has been more common among the higher educated, although this advantage is decreasing. Differences in the patterns of change in living arrangements across educational groups are small. Of the remaining life expectancy at age 65 in 1987...
women could expect to live about 40% with a partner; with the proportion increasing slightly to 2011 and 2035. Among men these proportion were much higher in 1987 in all educational groups, but have declined slowly among the basic and secondary educated and quite markedly among the tertiary educated. Conversely, the much longer life expectancy of living alone among women as compared to men has narrowed somewhat.

Comparisons to living arrangement projections from other countries

Living arrangement projections, usually referred to as household projections, are routinely produced by few countries and methodologies vary widely. Thus, information comparable to ours is rare. Most household projections – themselves a small minority of population projections in general – typically provide little specific detail on elderly households and often focus on the overall number of households and their average size. Few projections are based on transition probability based models and to our knowledge there are no projections that aim at disaggregating by educational level.

However, withstanding these differences in methodology and aims certain similarities emerge from the selected projections that we accessed. For example, Australian projections show a similar trend as we do of declining proportion of women – particularly 80+ women – living alone, with constant or moderately increasing proportion among men. These future trends are likely to be particularly strong if past trends in living arrangement propensities continue to the mid-2030s (Australian Bureau of Statistics 2011). Projections for Norway up to 2032 show similar trends also for elderly women, but somewhat surprisingly also project living alone to increase quite among men (Keilman et al 2010). More generally, the share of single persons households of all ages are expected increase (e.g. Alho & Keilman 2010, Christensen & Keilman 2013).

Methodological considerations

Generally short-term household projections for older people tend to be more reliable than those for the younger or for the total population (Alho & Keilman 2010, Christiansen & Keilman 2013). The most important reason for this is that there is no need to project fertility and partnership formation/dissolution that have little effect on the accuracy of projections among the older population. Furthermore, in a projection period of about 20-25 years migration also has a relatively modest role to play as about 80% of migration occurs at ages below 40-years (and that Finland is still a society with relatively low net-migration).

Thus, the potential for projection error is probably most significant for mortality. Overall our baseline life expectancies at age 65 are lower than those produced by Statistics Finland (1.0 years for women and 0.7 years for men). This is probably mainly because we exclude emigrants from our analyses. Our variable rates projection has extrapolated mortality rates for about 25 years to the future. The life expectancy at age 65 that we obtain for men for 2035 increases by about 4.8 years while the corresponding increase is 0.9 years less in the Statistics Finland most recent population projection; thus we obtain life expectancies of 21.7 and 21.5 years, respectively. However, for women life expectancy at age 65 is increasing slightly slower in our projection and in 2035 life expectancy at age 65 is about 1.3 years lower than the Statistics Finland projection (23.6 vs. 24.9 years). Both projections show a convergence of life expectancy among men and women. This is in accordance with past trends in many high income countries at these ages and with the latest population projection for the majority of EU countries by Eurostat (Eurostat 2014). However, the convergence of sex differences that we project is particularly strong. From a methodological point of view this may reflect: (1) Relative stagnation of mortality decline among women and particularly strong mortality decline among men in the period 2006-2011 which define the mortality trend in our projection. (2) The methodological choice of projecting educational groups separately and obtaining totals by aggregating over the education groups. This choice will put more emphasis on the mortality trends of the better educated that are rapidly increasing over time. In general, life expectancy projections may diverge significantly. For example, Eurostat projects much slower mortality declines for Finland at these ages – about 1.6-1.8 years less – than Statistics Finland.

One of the major forces that may be expected to continue to contribute to the strong trend of converging life-expectancies is the continued decline of smoking related mortality among men and increase or stability among women. These trends reflect the earlier maturation of the smoking epidemic among men than women in most high income countries. As a consequence, US sex differences in life expectancy have
converged significantly and this convergence is strongly attributable to smoking (Preston 2006, Pampel 2005). Similar estimates for the Netherlands also indicate that when sex differences in life expectancy at birth peaked in the early 1980s (6.7 years) smoking accounted for almost 90% of these differentials; sex differences have since converged and are currently about 2.2 years with smoking accounting for about 60% (Janssen & van Poppel, 2015). In Finland, at age 50 women outlived men by 6.1 years in 1971–1975 but that gap would have been only 3.1 years without smoking. By 2006–2010, smoking-attributable mortality accounted for only about a fifth, or 1.1 years, of the 5.4-year sex gap in life expectancy. The continuing cohort replacement of male cohorts with lesser exposure to smoking may be expected to contribute to further reduction in sex differences in life expectancy. For US mortality projections to assess this possibility exist. These indicate that smoking will continue to contribute to mortality decline in the decades to come and that as a consequence sex differences in mortality will narrow significantly in the coming decades (Preston 2006; Preston 2013, Pampel 2005). Preston et al (2013) predict that from 2010 to 2040 men will have gained 1.54 years and women 0.85 years in life expectancy at age 40 from reductions in smoking attributable mortality. These gains will be partially offset by mortality increases caused by increased obesity, but these will not affect the sex convergence of life expectancy.

We have projected men and women separately and made no constraints to take into account that some of the processes we observe have repercussion at the couple level. For example, death of a married woman also leads to the widowhood of a married man. Explicitly allowing for this problem (the so called ‘two-sex’—problem) is typically extremely difficult in population projections and no standard procedure exists (Alho & Keilman 2010). In our particular, relatively short term, projection the most likely inconsistency would be, for example, that the projected increase in the number of 80+ women living with a partner would not be consistent with a matching trend in the number of men living with a partner; this does not appear to be the case.

For a proper substantive interpretation of our findings any measurement errors in living arrangements need to be considered. Overall, the reliability of Finnish register data on place of residence and living arrangements is considered to be high. Reliability surveys indicate that more than 98% of information on address is correct (Statistics Finland, 2010). Our measurement of non-marital cohabitation is derived from information on shared place of residence, and does not take into account the perceptions of the subjects as to whether they are partners. However, register-based prevalence estimates of cohabitation in Finland have been found similar to those obtained from survey data with self-reported cohabitation (Aromaa & Koskinen, 2004). Finally, our data on end of the year living arrangements is likely to underestimate those living in non-private households; at these ages these consist of various types of long-term care arrangements (nursing homes, supported housing with 24-hour care or health care wards) This underestimation is probably due to the fact that those who have been residents of such care institutions for a short time only still maintain their home addresses. Comparing the number of non-household individuals in our data to more accurate estimates available from the records of the facilities providing long-term care maintained by the National Institute for Health and Welfare indicate that in 2011 we underestimate the number of long-term care residents by about 13% with the underestimate being higher among women than men and also probably for those that are married.

Conclusion and policy implications

In the course of the latter part of the 20th century Finland experienced major changes in household behaviour and education. At the beginning of our study period in 1987 the 65+ population was born before the mid-1920s; by the end of our projection period in 2035 before mid-1960s. In Finland cohort nuptiality increased for cohorts born from the 1900s onwards and peaked for the cohorts born in the 1930s and 1940s when about 9 out of 10 eventually married. In later birth cohorts marriage was increasingly replaced by cohabitation. Union dissolution for marriage cohorts of the mid-1960s increased rapidly and approached 30% and is likely to be around 50% for those marrying in the 1980s (Suomen Väestö 2007). Similarly, educational opportunities increased rapidly since the end of the Second World War. These rapid social changes are shared with many other high income countries.

These patterns are also evident in our data as observed until 2011. Furthermore, these cohort changes also underlie our projections which are consistent with the ageing of cohorts with evolving marriage rates and union dissolution rates as well as ever higher educational qualifications. We carried out projections with transition rates fixed at their 2011 values and variable rates projections based on extrapolating past
trends in transition rates into the future. These two sets of projections – regardless of the fact that our methodological choices yield rapidly converging sex differences in mortality in the variable rates projection – produce relatively similar living arrangement distributions over the projection period. As expected, the variable rates projection produces a somewhat more rapid future decline in the proportions living alone among ageing women than the fixed rate projection. The relative similarity in the outcomes of these different projections demonstrate that future living arrangement distributions are mainly driven by the replacement of older birth cohorts with more recently born cohorts; for example, the increasing proportion living with a partner at older ages is driven by the ageing of the cohorts with high nuptiality rates to ages 80+.

In summary, we know that the future elderly population will be better educated than ever before and is more likely to live with a spouse or partner for the next 25 years or so. Future living arrangement distributions of older people are strongly determined, in particular, by past household behavior and to a lesser future changes in mortality. Furthermore, if life expectancy differences between men and women continue to converge in the long-run, so will the remaining life spent living with a partner for both sexes and living alone for men. Raising education is simply a consequence of cohort replacement. However, it remains to be seen whether the better educated and partnered future elderly will benefit from the same social, functioning, health and mortality advantages as the well-educated elderly and partnered of today. Another possibility is that the benefits of education and partnership are devalued over time. In the past 25-years some of these differences have remained surprisingly persistent; for example, despite large distributional changes in these characteristics the strong health benefits of education and living with a spouse remain. Thus, if the past is a guide for the future, we may expect to see a better functioning elderly population as a consequence of these demographic changes.
References

Figure 1. Population (N) by sex, age and education for years 1987, 2011 and projected for 2035¹

¹2035 projection based on constant transition rates
Table 1. Age-adjusted proportion (%)\(^1\) and number of participants (N) in different living arrangement groups by sex, education and year\(^2\)

<table>
<thead>
<tr>
<th></th>
<th>Basic</th>
<th>Secondary</th>
<th>Tertiary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1987</td>
<td>2011</td>
<td>2035 (c)</td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With partner</td>
<td>64.4</td>
<td>64.8</td>
<td>56.4</td>
</tr>
<tr>
<td>Alone</td>
<td>20.2</td>
<td>25.8</td>
<td>33.9</td>
</tr>
<tr>
<td>Other households</td>
<td>9.1</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Non-private households</td>
<td>6.3</td>
<td>4.3</td>
<td>4.6</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>N</td>
<td>181 318</td>
<td>216 900</td>
<td>109 200</td>
</tr>
</tbody>
</table>

Women												
With partner	23.2	37.2	36.6	41.2	41.2	32.5	47.7	49.0	49.0	32.0	51.3	54.7
Alone	43.3	47.7	49.8	46.9	45.9	42.9	43.5	41.6	50.9	41.8	38.9	33.5
Other households	21.4	8.0	6.5	3.8	16.4	5.9	4.3	4.5	12.8	4.2	4.1	6.9
Non-private households	12.1	7.1	7.2	8.1	5.2	3.6	4.9	4.0	4.0	2.7	2.4	3.3
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
N	351 127	329 573	122 100	136 900	39 691	133 727	297 636	318 500	23 282	92 764	310 318	327 518

\(^1\)Standard population: population for 2011

\(^2\)2035 projection: c=constant transition rates, v=variable transition rates
Figure 2. Change in age-adjusted proportion (%) of different living arrangements by sex and age¹

¹Solid lines: constant transition rates
Dashed lines: variable transition rates
Table 2. Life expectancy change by sex, education and living arrangement

<table>
<thead>
<tr>
<th></th>
<th>Year</th>
<th>With partner</th>
<th>Alone</th>
<th>Other households</th>
<th>Non-private households</th>
<th>All</th>
<th>Change from previous period</th>
<th>% with partner</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tertiary</td>
<td>1987</td>
<td>12.2</td>
<td>2.1</td>
<td>0.9</td>
<td>0.7</td>
<td>15.9</td>
<td>76.8</td>
<td>76.8</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>14.5</td>
<td>4.0</td>
<td>0.4</td>
<td>0.6</td>
<td>19.6</td>
<td>74.1</td>
<td>74.1</td>
</tr>
<tr>
<td></td>
<td>2035</td>
<td>14.3</td>
<td>6.7</td>
<td>0.9</td>
<td>1.5</td>
<td>23.4</td>
<td>61.1</td>
<td>61.1</td>
</tr>
<tr>
<td>Secondary</td>
<td>1987</td>
<td>8.7</td>
<td>4.2</td>
<td>0.9</td>
<td>0.3</td>
<td>14.1</td>
<td>62.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>11.5</td>
<td>4.5</td>
<td>0.9</td>
<td>0.7</td>
<td>17.6</td>
<td>65.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2035</td>
<td>12.6</td>
<td>6.5</td>
<td>0.9</td>
<td>1.3</td>
<td>21.3</td>
<td>59.1</td>
<td></td>
</tr>
<tr>
<td>Basic</td>
<td>1987</td>
<td>8.9</td>
<td>2.8</td>
<td>1.1</td>
<td>0.5</td>
<td>13.4</td>
<td>66.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>9.7</td>
<td>5.2</td>
<td>0.8</td>
<td>0.8</td>
<td>16.5</td>
<td>59.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2035</td>
<td>11.7</td>
<td>4.6</td>
<td>0.4</td>
<td>1.2</td>
<td>17.9</td>
<td>59.0</td>
<td></td>
</tr>
<tr>
<td>WOMEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tertiary</td>
<td>1987</td>
<td>8.5</td>
<td>8.3</td>
<td>1.3</td>
<td>1.4</td>
<td>19.5</td>
<td>43.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>10.8</td>
<td>9.7</td>
<td>0.9</td>
<td>1.0</td>
<td>22.4</td>
<td>48.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2035</td>
<td>11.4</td>
<td>9.1</td>
<td>1.9</td>
<td>1.8</td>
<td>24.2</td>
<td>47.1</td>
<td></td>
</tr>
<tr>
<td>Secondary</td>
<td>1987</td>
<td>6.9</td>
<td>8.6</td>
<td>1.5</td>
<td>0.7</td>
<td>17.7</td>
<td>38.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>9.5</td>
<td>9.9</td>
<td>1.1</td>
<td>1.1</td>
<td>21.6</td>
<td>43.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2035</td>
<td>10.0</td>
<td>10.0</td>
<td>1.2</td>
<td>2.3</td>
<td>23.5</td>
<td>42.3</td>
<td></td>
</tr>
<tr>
<td>Basic</td>
<td>1987</td>
<td>6.2</td>
<td>7.8</td>
<td>2.0</td>
<td>1.5</td>
<td>17.5</td>
<td>35.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>8.2</td>
<td>9.5</td>
<td>1.3</td>
<td>1.4</td>
<td>20.4</td>
<td>40.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2035</td>
<td>10.9</td>
<td>8.4</td>
<td>0.7</td>
<td>1.9</td>
<td>21.9</td>
<td>50.0</td>
<td></td>
</tr>
</tbody>
</table>