Family Background, Skin Color and Contact with the Criminal Justice System

Jessica M. Kizer, University of California, Irvine

Abstract: Despite sharing a family background, siblings vary from one another in variety of later life outcomes. While previous studies have examined sibling differences in criminal justice outcomes, no study has investigated whether skin color influences this relationship. Social scientists have demonstrated that skin color significantly shapes the life chances of blacks and Latinos, however very little work has been done on siblings. In this paper, I examine if skin color affects brothers’ differential contact with the criminal justice system. My preliminary analyses suggest that men with darker skin are significantly more likely to experience an adult arrest than their lighter-skinned brothers.
Although raised in the same household siblings vary from each other on a variety of measures including, contact with the criminal justice system (Schwartz and Beaver 2014). Although researchers have argued that this is due to genetic differences (Schwartz and Beaver 2014), in this paper I examine if the differential skin color of brothers impacts their contact with the criminal justice system. Previous studies show that inmates who had more Afro-centric features, including darker skin, received longer sentences than inmates who had committed similar crimes and had comparable criminal histories (Pizzi, Blair and Judd 2006). Additionally, there is a large body of research that demonstrates that black and Latino men have higher arrest rates than white men (Tapia 2010; Tonry 2011). However, due to data limitations very few studies have addressed if skin color plays a role in contact with the criminal justice system, despite many American studies demonstrating that darker skinned blacks and Latinos do worse on a variety of outcomes than their lighter-skinned counterparts (Arce et al. 1987; Espino and Franz 2002; Hill 2000; Hughes and Hertel 1990; Hunter 1998, 2005; Keith and Herring 1991; Monk 2014).

Data and Methods

I use sibling data from the National Longitudinal Study of Adolescent to Adult Health (Add Health), a nationally representative sample of American siblings who were enrolled in grades 7-12 in1994-5. It is the only national survey to collect data from respondents’ skin color and have a sample of siblings, which makes it an ideal survey for examining the influence of skin color on young adult life outcomes, such as contact with the criminal justice system. I draw primarily on the wave 4 in-home interviews conducted from 2007 to 2008 when the respondents were aged 24-32. My analytic samples includes 711 brothers with nonmissing skin color classification data, as coded by the interviewer in wave 3, and racial self-identification data. For the preliminary
analyses presented here, I examine if skin color is related to brothers’ experiences with the
criminal justice system in the United States. Table 1 presents the racial breakdown of the sample
of brothers, along with descriptive statistics on the dependent variables.

My independent variable is a scale for skin color, recorded by the interviewer at the end
of the wave 3 survey. The categories for skin color included “black”, “dark brown”, “light
brown” and “white”. I coded this as a scale using a range from 1 (white) to 5 (black). I account
for a variety of the respondents’ demographic characteristics to establish that the different
patterns for skin color do not result from other measured factors. Controls include: nativity,
gender and age, all coded as indicator variables (for being born in the United States, being a man
and the birth year of the respondent). Additionally, I account for wave 3 self-reported race. The
categories for race included “black or African American”, “American Indian or Native
American” and “Asian or Pacific Islander”. If respondents gave more than one response to this
question, I used the category that they indicated best described their racial background. In
addition, they were asked a separate question about their Hispanic or Latino origin. I coded
respondents as Latino if they responded with a “yes” to that question, regardless of the race they
put down.

I also control for wave 3 interviewer characteristics because prior researcher shows that
interviewers’ race affect how they perceived and code skin color (Hill 2002). A series of binary
indicators includes the interviewers’ self-identified gender, race (“white,” “African American,”
“Asian/Pacific Islander,” “American Indian/Alaska Native,” or “other”), educational attainment
(having a high school diploma or college degree), and whether the interviewer identified as
Hispanic. The interviewers’ age in years is also included as a continuous variable.
I use four dependent variables. First, I examine different dimensions of contact with the criminal justice system: whether the respondent reported having been arrested, convicted, or incarcerated as an adult (i.e., over the age of 17). Examining these variables one-by-one allows us to identify whether skin color shapes contact equally, or whether there are differences in the degree or severity of contact. I also consider the number of arrests the men in my sample experienced in the six years between waves 3 and 4.

Preliminary Findings

Table 2 presents results on how contact with the criminal justice system varies by skin color. In examining the effect of skin color on having an adult arrest, respondents who are darker-skinned are significantly more likely to have an arrest than their lighter skinned brothers. Although the patterns for being convicted and incarcerated as an adult are the same, the results are not statistically significant. I now turn to looking at the effects of skin color on having an arrest between waves 3 and 4, as experiencing an arrest seems to be an important dimension of criminal justice contact. Table 3 examines whether skin color affects simply being arrested or if having a darker skin tone is related to the frequency of arrest. As we can see although darker skinned men are more likely to have a new arrest between waves 3 and 4, the effect is not statistically significant. However, in looking at the frequency of new arrests, darker skinned men are significantly more likely to have multiple arrests than their lighter skinned brothers.
References

<table>
<thead>
<tr>
<th>Self-Identified Race (N)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>381</td>
</tr>
<tr>
<td>Black</td>
<td>128</td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>68</td>
</tr>
<tr>
<td>Latino</td>
<td>132</td>
</tr>
<tr>
<td>Arrested (%)</td>
<td>22.46</td>
</tr>
<tr>
<td>Convicted (%)</td>
<td>9.32</td>
</tr>
<tr>
<td>Incarcerated (%)</td>
<td>12.98</td>
</tr>
<tr>
<td>New Adult Arrest (%)</td>
<td>21.54</td>
</tr>
<tr>
<td>Frequency of New Adult Arrest (Mean)</td>
<td>0.79</td>
</tr>
<tr>
<td>(Standard Deviation)</td>
<td>1.96</td>
</tr>
<tr>
<td>Total N</td>
<td>711</td>
</tr>
</tbody>
</table>
Table 2: Odds Ratios from Logistic Regression Family-Fixed Effects Models Predicting Different Levels of Adult Contact with the Criminal Justice System

<table>
<thead>
<tr>
<th></th>
<th>Arrested</th>
<th>Convicted</th>
<th>Incarcerated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin Color</td>
<td>1.847*</td>
<td>1.446</td>
<td>1.417</td>
</tr>
<tr>
<td></td>
<td>(0.842)</td>
<td>(1.559)</td>
<td>(0.924)</td>
</tr>
<tr>
<td>Black</td>
<td>-19.887</td>
<td>-19.941</td>
<td>Omitted</td>
</tr>
<tr>
<td></td>
<td>(8336.918)</td>
<td>(7765.798)</td>
<td></td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>Omitted</td>
<td>Omitted</td>
<td>Omitted</td>
</tr>
<tr>
<td>Latino</td>
<td>Omitted</td>
<td>Omitted</td>
<td>Omitted</td>
</tr>
</tbody>
</table>

N
102
54
64

*p<.05 **p<.01***p<.001 (two-tailed tests) Note Standard errors are in parentheses.
Table 3: Family-Fixed Effects Models Predicting the Presence and Frequency of Arrests between waves 3 and 4

<table>
<thead>
<tr>
<th></th>
<th>Arrest</th>
<th>Frequency of Arrests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin Color</td>
<td>0.962</td>
<td>0.652*</td>
</tr>
<tr>
<td></td>
<td>(1.008)</td>
<td>(0.316)</td>
</tr>
<tr>
<td>Black</td>
<td>-18.278</td>
<td>-2.364</td>
</tr>
<tr>
<td></td>
<td>(6423.799)</td>
<td>(2.523)</td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>Omitted</td>
<td>Omitted</td>
</tr>
<tr>
<td>Latino</td>
<td>Omitted</td>
<td>0.115</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.862)</td>
</tr>
<tr>
<td>N</td>
<td>84</td>
<td>495</td>
</tr>
</tbody>
</table>

*p<.05 **p<.01 ***p<.001 (two-tailed tests) Note Standard errors are in parentheses.