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ABSTRACT   

The urban heat island (UHI) phenomenon affects local, as well as regional and global climates, yet most 

of what is known about UHI comes from local case studies using methodologies that vary considerably 

from case to case.  We present the first global examination of UHI for hot desert and hot semi-arid 

desert cities using data and methodology consistent across 159 cities.  By using a global approach it is 

apparent that desert cities cluster at the edges of climate zones.  As suggested in the case-study 

literature, the majority, but not all, desert cities have negative UHI during the daytime, but positive at 

night.  Vegetation in the cities, compared to bare ground in the rural buffer is an important contributor 

to the negative daytime UHI.  But there are a variety of other biophysical factors including nearness to 

an ocean, the Humboldt current, elevation, and the Indian monsoon, that are important.  Even after all 

the biophysical factors are controlled, development, whether measured by GDP, energy consumed or 

electricity consumed, reduces the size of the oasis UHI effect, confirming that anthropogenic effects go 

beyond planting and irrigating vegetation.  

INTRODUCTION 

The urban heat island phenomenon (UHI) is well-known, with urban areas warmer than their 

surrounding rural countryside.  Cities produce their own microclimates, affecting local behavior, 

health, and economies as well as regional and global climates. The reasons for UHI include 

building and road materials absorbing radiant heat in the daytime, slowly releasing it at night; 

HVAC systems and motor vehicles generating heat; lower proportion of surface area covered in 

water; manufacturing activities releasing heat; and human metabolism itself. And there is a 

positive feedback loop as temperatures increase more energy is used to cool workplaces and 

dwelling units.   

 Most of what is known about the UHI effect comes from case studies of a single city, 

with regional and global relationships resulting from literature reviews of case studies
1
. Most 

case studies are in temperate zones, with even less known about cities in the (sub)tropics (Roth 

                                                           
1
 An exception is the analysis by Ping and coauthors (2011) of 419 global cities with populations larger 

than 1,000,000 using MODIS data. But they did not examine the difference in land surface temperatures 

(LST) between the urban area and the surrounding rural buffer, as is common in UHI studies.  Rather 

they compared the LST of the urban core with the suburban ring. 
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2007) and/or desert cities.  Among the few reports available for desert cities are hints that 

desert urban areas may be cooler, rather than warmer, than their rural surroundings, especially 

during the daytime with the suggestion that vegetation patterns are likely responsible 

(Bounoua et al. 2009; Imhoff et al. 2010; Jenerette et al. 2010; Jin, Dickinson and Zhang 2005; 

Lazzarini et al. 2013; Roth 2007; Saaroni and Ziv 2010).  Relying on case studies, especially the 

few that exist for desert cities, has the drawback that the few cities studied are not globally 

representative and temperature measurement procedures vary across cases (Santamouris 

2015; Stewart 2011; Wienert and Kuttler 2005).  Further, case studies allow one to see the 

effect of factors that vary within the case site, but not the effects of factors that vary across 

cities but are constant within the case; you can see the tree, but not the forest.    

 Understanding the anomalous negative UHI, or oasis effect, for desert cities is important 

from several perspectives.  Desert cities are already hot and projected to get hotter.  The 

availability of water is a critical issue in arid climates.  One fifth of the global land area is arid or 

hyperarid.  U.S. desert cities are growing faster than cities in other climate zones (Sutten and 

Day 2004).  And since more than 90% of the global population residing in the desert are in 

developing countries with high rates of rural to urban migration, rapid growth in desert cities is 

likely (United Nations Environment Programme 2006).     

 Here we present the first systematic, global investigation of urban heat index (UHI) 

variation across 159 desert cities in the hot desert and hot semi-arid climate zones – BWh and 

BSh zones respectively in the Köppen-Geiger climate classification (Peel et al. 2007).  We use 

MODIS and GRUMP data which provides comparable global data across cities (Balk 2009; Jin 

2012).  Not only do our results show that vegetation differences are crucial in determining 

desert UHIs, but also that a range of additional biophysical and socioeconomic factors are also 

important determinants.  Further, using globally consistent land surface measurements and 

demographic data, our method shows how global UHI studies are possible without resorting to 

aggregating a set of idiosyncratic case studies. 

CITIES AND DATA 

Two data sources are used to create UHIs for 159 desert cities. The location of urban areas, as 

well as their population counts, come from GRUMP, which uses the 1994-95 stable city-lights 

data set from NOAA’s nighttime lights satellite data, census data from the national statistical 

offices of countries (2000-4 where available, and earlier if necessary), and a wide assortment of 

maps and gazetteers (http://sedac.ciesin.columbia.edu/data/collection/grump-v1). See Balk et 

al. 2005 and Balk 2009 for GRUMP construction details, and Dorelien et al 2013 for a cross-

check of locational and boundary quality against an international survey effort. GRUMP’s raster 

data provides global population information, with a rural-urban classification, for 30 arc-second 

(1km) pixels.  We examine cities with a population of 50,000
 
or more.  Because night-lights data 

can “overglow” into the surrounding rural areas, especially in developed countries, thus 

creating ambiguity about the urban extent boundaries
2
 (Dorelein et al. 2013; Zhang and Seto 
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 Boundary definition is a general problem in UHI research (e.g., Balk 2009; Chow and Svoma 

2011). 
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2013), we set urban boundaries with GRUMP urban pixels containing a population of 500 or 

more. 

 We obtained year 2000 land surface
3
 temperature (LST) from the EOS-Terra-MODIS V5 

(MOD11C3) composite product. The MODIS V5 LST product is monthly composited and 

averaged based on clear-sky observations at a spatial resolution of 0.05° (~5600 m). The MODIS 

V5 LST is well-validated. For example, Wan (2008) reported a high consistency between MODIS 

V5 LST product and in situ measurements with a less than 0.5 K RMS difference.  To insure 

temperature measurement stability across pixels for a city, we choose cities that contain a 

minimum of 5 MODIS Terra LST pixels.  We use both daytime, 10:30, and nighttime, 22:30, 

temperature data, summer (July 1-31 in the Northern Hemisphere and December 1-31 in the 

Southern Hemisphere) and winter.   

 Since MODIS is an optical instrument, clear-sky observations are necessary, and that is 

why a 31-day composite is used.  For 17 cities in India there were one or more MODIS pixels for 

which for the entire month of July clear-sky observations were not available.  For these pixels 

with missing data, we used a simple interpolation technique by iteratively applying a 7 × 7 

MODIS pixel low-pass filter over the missing data pixels to obtain LST estimates from 

neighboring MODIS pixels. 

 The geographical location of the 159 cities examined is shown in Figure 1, along with the 

spatial extent of the BWh and BSh climate zones.  Desert cities cluster on the edges of the BWh 

and BSh zones, rather than being dispersed evenly across the zones.  This edge clustering has 

not been previously reported and presumably is related to the location of available water – 

both ground and atmospheric. It indicates the potential fragility of desert cities to climate 

change. 

     <Figure 1 about here> 

 The urban heat index is defined as: UHI = urban LST – rural buffer LST.  Because cities 

typically have a transition zone where some urban features are mixed with rural land use, it is 

important for the rural buffer to be located some distance from the urban boundary.  We use a 

rural buffer of 30-35 km around the urban boundary.  Figure 2 shows the urban extent and rural 

buffer for Khartoum, Sudan.  In cases where the buffer intersects a large water body, the part 

of the buffer over water is not included in the calculation of the buffer’s temperature.  To 

minimize the effect of substantial elevation differences between a city and its rural buffer, for 

each city, we calculated the difference between the elevation of each pixel in the rural buffer 

and the mean elevation of the city. This generates an elevation difference buffer (EDB).  If a 

pixel in the EDB has an elevation value more than two standard deviations below or above the 

urban mean, the temperature for the pixel encompassing that particular elevation pixel is not 

included in the calculation of the UHI index for that city.  We calculate UHIs for summer and 

winter, daytime and nighttime, providing seasonal and diurnal variability.  For daytime, we 

expect oasis-cooling effects (negative UHIs) due to more vegetation/shading in built-up areas; 

                                                           
3
 Many case studies use air temperature; there is a high correlation between air and surface 

temperatures (Arnfield 2003; Mallick et al. 2013; Song et al. 2015).  
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whereas, during nighttime, heat storage of the city’s impervious covers would induce classic 

heat island formation (positive UHI).  In addition, the role of coastal location, terrain, elevation, 

and rural land conditions are expected to moderate dimension of UHI.  

     <Figure 2 about here> 

URBAN COOLING 

Table 1 shows the number of negative (the city is cooler than its rural buffer) and positive UHIs 

for our 159 desert cities for 4 combinations of summer/winter and day/night. As the few 

scattered case studies suggested, negative UHIs are common.  During the daytime the majority 

of desert cities globally are cooling sinks.  The contrast between daytime and nighttime is as 

expected, with fewer negative UHIs as impervious surfaces in the cities are still radiating heat, 

motor vehicles are still running, and HVAC units generating heat. 

     <Table 1 about here> 

 Figure 3 shows the UHI distributions across 159 cities ranked from most negative to 

most positive for summer daytime (Figure 3a), summer nighttime (3b), winter daytime (3c) and 

winter nighttime (3d).  Variation is considerable for all four season/time combinations, but 

especially so for summer daytime.  The UHI is between -1.0 and +1.0 for only 47% of the cities 

in summer daytime; for comparison, the comparable percentages for summer nighttime, winter 

daytime and winter nighttime are 72%, 70% and 60% respectively. With respect to the 

extremes, during the summer Aden, Yemen has the lowest daytime UHI (-8.38) and Ta’izz, 

Yemen the lowest summer nighttime (-2.15), Sawai Madhopur, India has the highest daytime 

(10.16) and Dehli, India the highest nighttime (6.56).  In the winter, Lima, Peru is the lowest 

both daytime (-3.37) and nighttime (-7.38), and Basra, Iran/Iraq is the highest both daytime 

(3.68) and nighttime (3.81). 

     <Figure 3 about here> 

 

Determinants – the variables 

What explains the wide variation seen in Figure 3?  The main factor suggested in the case-study 

literature is the amount of vegetative cover in the desert city relative to its rural buffer.  But 

there are other biophysical and socio-economic factors that could influence a city’s UHI. 

 Vegetation, or green cover, is measured by the Normalized Difference Vegetation Index, 

or NDVI, from MODIS.  NDVI is calculated as follows: NDVI = (NIR-red)/(NIR+red)  Due to a 

strong energy absorption by vegetation in the red visible portion of the electromagnetic 

spectrum and a strong reflection by vegetation in the near-infrared (NIR) portion of the 

spectrum the NDVI using the above formula can effectively identify green vegetation biomass 

(Jensen, 1996; Zhang et al., 2009).  NDVI varies between -1.0 and +1.0.  We then take the 

difference between urban and rural NDVI, NDVI-DIF = NDVIurban- NDVIrural buffer, as our measure 

of vegetative difference.  NDVI-DIF ranges from -0.47 to +0.37 in the summer, and -0.42 to 

+0.42 in the winter. 
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 We examine 6 other biophysical variables.  First, we obtained the ASTER Global DEM V2 

product for our elevation data and calculated the average elevation for each city.  Higher 

elevation should lead to a cooler city.  For our 159 cities, elevation ranges from -5m (Al’Amarah, 

Iraq) to 1,920m (Aguascolientes, Mexico).  The second biophysical variable is the percent of 

rural buffer pixels that are below the mean elevation for the city, ranging from 5 to 99 percent, 

and influencing wind patterns for the city.  Elevation range in the rural buffer, in kilometers, is 

also included.  The larger the rural elevation range, the more likely the city is surrounded by 

mountains bringing cooling wind patterns. 

 Another biophysical variable is whether the rural buffer intersects with a major water 

body, which is the case for 49 cities.  Figure 4 maps the water and non-water cities.  Being near 

the ocean is expected to cool the city relative to its rural buffer.  Eight of the water cities are on 

the Peruvian coast
4
 where they are cooled by the Humboldt Current, especially in the winter 

when offshore winds are stronger.  These eight cities are represented by a Humboldt Current 

dummy variable. 

     <Figure 4 about here> 

 The final biophysical variable is a set of dummy variables representing the location of 

the rural buffer pixels relative to the Köppen-Geiger climate zones: Only BWh, combination of 

BWh and BSh, and a mix including other Köppen-Geiger climate zones, with OnlyBSh as the 

reference category. 

 Demographic variables include population and density, both obtained from GRUMP.  

Other things being equal, a large population should lead to more heat build-up during the 

daytime.  Higher density should lead to taller structures and more energy use per square meter.  

But, somewhat surprisingly, density was never significant across multiple model specifications, 

and so was dropped from the analyses reported below.  Three country-level
5
 socio-economic 

variables were used: GDP per capita 

(http://data.worldbank.org/indicator/NY.GDP.PCAP.CD?page=2), energy use measured as kg of 

oil equivalent per capita (http://data.worldbank.org/indicator/EG.USE.PCAP.KG.OE) and electric 

power consumption per capita (http://data.worldbank.org/indicator/EG.USE.ELEC.KH.PC).  All 

three are right-skewed and were logged to adjust for the right-skew.  All three are highly 

correlated with one another and sensitivity tests showed that they tend to have the same effect 

                                                           
4
 One is on the border with Ecuador and one on the border with Chile. 

5
 The following cities sit on the border of two+ countries: Yuma (USA/Mexico), Brownsville 

(USA/Mexico), Faisalabad (Pakistan/India), Ghazzah (Israel/Egypt/Occupied Palestinian Territory), Basra 

(Iran/Iraq), Ad Dammam (Saudi Arabia/Bahrain), N'Djamena (Chad/Cameroon), Machala (Ecuador/Peru).  

For these countries, the socio-economic variables were averaged from the 2 or 3 countries with whom 

they share a border.  

Energy and electricity data was not available for 3 sub-Saharan countries: Burkina Faso, Chad, and 

Mauritania.  For these 3 countries we averaged values from neighboring countries, excluding those 

where the main population settlements were above the Sahara desert. 
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on UHI.  Below, we report results for energy use (logged) because it is most clearly tied to urban 

heat generation, and broader than electric power consumption.   

 Finally, to control for unmeasured country-level factors, we created dummy variables 

for all countries for whom we had 8 or more cities in our set of cities: India, Iraq, Mexico, 

Pakistan, South Africa, and the United States.  In a wide variety of preliminary analyses, only 

India was consistently significant, and is included in the regression results presented below.  

Regression Results 

To what extent does the vegetation difference between desert cities and their rural buffers 

explain variation across 159 desert cities?  Put differently, is it just vegetation or are other 

factors also part of the explanation.  Table 2 shows the variance explained (adjusted R-square) 

for an OLS regression model that just contains NDVI-difference and a full model that also 

contains all the other variables. 

     <Table 2 about here> 

 Clearly the urban-rural buffer vegetation difference is important in explaining UHI 

differences across desert cities.  It explains more variance during the day than at night, as 

would be expected, with the most variance explained during winter daytime when desert cities 

are greener resulting from cooler temperatures producing less vegetative evapotranspiration.  

Adding the other social and biophysical variables increases the variance explained in all four 

season-diurnal combinations, arguing that global desert city UHI variation is not simply a 

vegetation story.  It is not just that people planted and irrigated grasses, trees and shrubs.  

Adding the other variables has a larger impact at night than during the day, especially in the 

winter
6
.  Further note that even the best fitting model (winter nighttime) explains only 35% of 

the variance, suggesting that there are important, unmeasured variables.  Likely candidates 

would include albedo
7
, building materials, roof aspect, roof slope, soil type, materials used for 

roads, pervious surface types, water elements within the city and the rural buffer, electricity 

generation, transportation systems, and wind direction/velocity,  

                                                           
6
 With respect to the large winter nighttime increase in variance explained when other variables are 

added to the model, in the winter the surrounding environment is very cold, and so there is little 

nighttime impact from vegetation. Hence, other variables that cool faster and more effectively or store 

colder temperatures longer (e.g., metal features) play a stronger role in lowering surface temperatures. 
7
 Although albedo data is available from MODIS, we do not use it because the albedo of build structures 

and road surfaces operates differently than albedo of vegetation, open soil, and water surfaces, and 

these land use/land cover types were not available at a sufficiently fine grain to distinguish among them.  

On building surfaces (roofs and outer walls) and road surfaces, lower albedo means less reflectance and 

thus higher surface heat build-up.  But lower albedo in dark vegetation and water surfaces provides 

cooling, compared, for example, to sand.  And so without distinguishing surface type, albedo can 

provide confusing signals.   
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 The results (coefficients) from OLS regressions for the 4 season-diurnal combinations 

are shown in Table 3.  Given the relatively small N, a 0.10 statistical significance threshold is 

used.   

 The NDVI difference measure is always significant and negative as expected.  When 

there is more vegetation in the urban area relative to the rural buffer, the city has a lower UHI.  

The effects are strong.  Further, the coefficient is substantially stronger in the daytime 

compared to nighttime, likely due to the shade component of the NDVI-difference effect and 

because the rural buffer is hotter during the day. Further, results from sensitivity tests (not 

shown) indicate that this NDVI difference measure does not mediate the effects of the other 

variables which thus are capturing something distinct from greenness.   

 Elevation has a consistent negative effect on UHI at night in both summer and winter, 

but not during the daytime.  The nighttime UHI decreases by 0.51 to 0.53 for every kilometer of 

elevation increase.  At higher elevations, man-made features cool faster than man-made 

features at lower elevations, especially for features made of metal and similar materials.  Also 

at higher elevations, in the rural buffer the ground is less likely to be composed of sand, a 

material that cools faster than rock or soil.  Thus the city cools faster and the rural buffer 

retains heat as elevation increases.  The percent of rural pixels below the city increases UHI by 

0.01 for every percentage point increase in the summer daytime.  And in winter nighttime, 

every kilometer increase in the rural buffer elevation range decreases UHI by 0.30, reflecting 

the cooling effect of being surrounded by mountainous terrain.   

 Having a portion of the rural buffer intersect a large water body has a negative effect on 

UHI at night in the summer, but not during summer daytime or in winter.  The reason for this 

summer pattern involves the differential rate of diurnal temperature gain on land and sea, the 

pattern of sea breezes as a result, and the fact that on average the rural buffer is further from 

the sea than the urban area.  Consider the last point first, using Port Sudan, Sudan as an 

illustrative city (Figure 5).  The red line marks the point of the city furthest from the Red Sea 

and extends north and south to intersect the rural buffer.  Most of the rural buffer is further 

from the Red Sea than the city.  Land warms faster during the day and cools faster during the 

night than the ocean.  This difference leads to an onshore breeze during the day and an 

offshore breeze at night.  The evening offshore breeze helps dissipate heat from the land, 

cooling the land closest to the sea the most.  In the cooler winters, having a portion of the rural 

buffer intersect a large water body is not significant, but for the 8 Peruvian cities near the 

Humboldt Current there is a large and significant winter nighttime cooling effect as expected. 

     <Figure 5 about here> 

 The final biophysical variables is the Köppen-Geiger climate zones for the rural buffer 

pixels.  The only significant contrast involves winter nighttime, when having only BWh pixels in 

the rural buffer compared to only BSh pixels results in a higher UHI, likely due to less vegetation 

in the BWh zone than in the BSh zone.  

 Cities in India have a higher UHI in the summer, day and night, and winter nighttime, 

than cities elsewhere. This India effect is larger during the summer day than at night and 
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consistent with a case study of Delhi (Pandey et al. 2014) and consistent with results by Oleson 

and colleagues (2011) using a completely different methodology to examine the effect of urban 

UHIs in global climate models.  While there are a number of possible factors, the most likely for 

the summer effects are the timing of the summer monsoon, which begins in May and peaks in 

July
8
. As a result of the monsoon, the rural countryside has high soil moisture, cooling the rural 

buffer.  Further, some of the Indian cities, such as Jodhpur, have considerable agriculture in the 

rural buffer; to the extent that it is greening up in July that could also have a cooling effect in 

the rural buffer leading to a higher UHI.  To further test this explanation, we deleted 8 Indian 

cities with the highest percentage of “black” pixels and re-ran the analyses.  Even though there 

were 9 Indian cities remaining in the analysis the Indian coefficient was no longer statistically 

significant. The winter nighttime positive effect is likely related to agricultural factors in the 

rural buffer.  While the monsoon is no longer present in December, Indian desert cities have 

considerable agricultural land in the rural buffer and a second crop is planted in November such 

that the rural area in evenings cools faster than the city
9
.   

 Energy logged has a positive impact on three seasonal/diurnal combinations, and it is 

stronger during the day than at night.  It is not significant winter nighttime.  We also examined 

GDP and electricity used, both of which are highly correlated with the energy measure and both 

of which also positively affect a city’s UHI. All three variables are indicators of economic 

development.  This relationship is as expected.  With economic development comes higher 

anthropogenic heating due to increased use of motor vehicles, air conditioning (or heating 

depending on season/location), and manufacturing, all of which generate heat in the urban 

area relative to the rural buffer.  

 The final variable in Table 3 is city population size.  It is not significant in any of the 

season/diurnal combinations.  In some preliminary model specifications it was negatively 

significant for summer daytime, but this effect disappears once NDVI difference is controlled.  

This suggests that more people leads to more green grasses, shrubs and trees, presumably 

enabled by irrigation.   

SENSITIVITY TESTS  

We conducted a wide range of sensitivity tests to check the robustness of our results.  We 

tested for plausible statistical interactions between the various predictor variables, and there is 

no evidence of significant interactions.  Put differently, the additive models in Table 3 are 

sufficient.  We also checked the functional form for the continuous variables, and the linear 

forms in Table 3 are appropriate, after energy (as well as GDP and electricity) are logged.  We 

also removed 8 cities that lie on the border of 2 or more countries, and the results were fairly 

robust with and without these 8 cities.  One summer-day, one summer-night, and one winter-

                                                           
8
 For example, during July 2000, the average daily rainfall for Jodhpur, one of the Indian desert 

cities, was 0.20 inches (www.cpc.ncep.noaa.gov/products/assessments/assess_94/india.html). 

Also see Mitra et al. 2012. 
9
 The desert cities in the Sahel have a monsoonal rain pattern similar to India, and so we tested 

a Sahel dummy variable.  It was not significant, likely because it is a weaker monsoon (c.f., 

Oleson et al. 2011) 
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night coefficient that were marginally significant became marginally not significant.  In a 

different sensitivity test, we removed 6 cities that were outliers in scatter plots of UHI and NDVI 

difference; one previously significant summer-night coefficient became marginally insignificant. 

 GRUMP data has three measures of quality.  First, the resolution of the census polygons 

for which population counts are available.  The finer the resolution of these census polygons, 

the better the population resolution across the GRUMP pixels.  Second, there is a more 

impresionistic measure of quality that ranges from 1 (lowest) to 4.  Finally, there is a variable 

indicating the year of the most recent census from which the population data were obtained.  

Most (79%) are within 4 years +/-  of the year 2000, but some are older.  At the extreme, there 

are 4 cities in Libya for which the data had to be extrapolated from 1984.  Controlling for these 

variables, one at a time, does not alter the fundamental story in Table 3.  

CONCLUSION  

In both summer and winter daytime, the majority of desert cities experience the oasis effect of 

negative UHIs. At night, summer and winter, far fewer, but some, have negative UHIs.  The 

vegetation planted in desert cities relative to the bare soil in the rural countryside plays an 

important role in creating the oasis effect, as was expected from a few case studies.  But our 

findings suggest that there are a wide variety of other factors also responsible, including being 

near a large water body, being at higher elevations, not having experienced a rainy monsoon, 

and not having a highly developed economy. 

 As the first study to examine UHI at a global scale without resorting to using 

idiosyncratic case studies with inconsistent measurement approaches, the methodology used in 

this study –LST from MODIS and urban extent/population data from GRUMP – permits global 

examination of UHI phenomena and allows other socio-economic and biophysical variables to 

be brought into the analysis.  As such, it opens the possibility of examining UHI distributions 

and correlates for a wide variety of variables.  And it does so with consistent measurement of 

LST and obtains temperature measurement for all pixels in the rural land buffer rather than just 

a few points. 

 To what extent should desert cities be encouraged to take steps to lower LST, thus 

moving to lower UHIs?  Given that higher urban temperatures are associated with elevated 

health risks (e.g., Patz et al. 2005), the answer would be yes.  If lower urban LSTs could be 

accomplished with building and road materials which strongly reflect solar radiation, with 

cooling devices which minimize heat build-up, and motor vehicles which emit less heat, then 

such policies should be encouraged.  If the approach is by having more trees and shrubs that 

are irrigated, then caution needs to be exercised. Of greatest concern would be the source of 

water and its abundance, with worries involving the nature of underground aquifers and 

locations downstream from rivers.  
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Figure 1. Geographic location of the 159 desert cities.  
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Figure 2. Urban extent and rural buffer for Khartoum, Sudan. 
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Figure 3. UHI values (in degrees C) across the 159 cities ranking from most negative to most 

positive for (a) summer daytime, (b) summer nighttime, (c) winter daytime, and (d) winter 

nighttime.  
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Figure 4. Map of water cities and non-water cities. 
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Figure 5. Urban extent and rural buffer for Port Sudan, Sudan.  
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Table 1. Number of negative and positive UHIs by season and time of day, year 2000. 

______________________________________________________________________ 

Season/time   negative positive total 

______________________________________________________________________ 

Summer day UHI      96     63   159 

Summer night UHI     35   124   159 

Winter day UHI     87     72   159 

Winter night UHI     49    119   159 

______________________________________________________________________ 

 

 

Table 2. Variance explained, excluding and including variables in addition to NDVI-difference. 

____________________________________________________________________________ 

                Summer               Winter 

     daytime nighttime daytime nighttime 

____________________________________________________________________________ 

Just NDVI-difference       .09       .04     .19      .01 

Additional variables added      .15       .16     .27      .35 

 

Difference between models      .06       .12     .08      .34 

____________________________________________________________________________ 
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Table 3. Results from OLS regression analysis of UHI. 

Variable   Day  Night  Day Night 

Intercept -2.92* -0.86 -2.75* -0.22 

NDVI difference -7.11* -3.82* -6.38* -2.05* 

Elevationa 0.28 -0.51* 0.33 -0.53* 

Percent of rural pixels below city  0.01* -0.01  0.00  0.00 

Range in elevationa 0.09 0.21 0.03 -0.30* 

Water -0.34 -0.66* 0.07 0.02 

Humboldt Current cities 0.18 0.14 -0.29 -2.21* 

Climate zoneb     

BWh only -0.69  0.30 0.13  0.72* 

BWh & BSh -0.52  0.40 -0.12 0.33 

Other zones -0.52 0.19 0.05 0.27 

India  0.95*  0.84* -0.16  0.42* 

Energy logged  0.34*  0.22*  0.35* 0.11 

Population -0.04 0.03 0.01 0.02 
* Significant at 0.10 
a In kilometers 
b BSh only is the reference category 
 


