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Abstract

For those concerned about economic opportunity, the pattern of social mobility over many

generations is a key subject of inquiry. Although this field has long focused on correlations between

the attainment of parents and children, this approach may understate the long-run persistence of

status if the information about life chances contained in extended families is ignored (Mare, 2011).

Recent studies have used a creative empirical lever to assess this possibility: if cousins attain simi-

lar socioeconomic outcomes, this suggests that familial advantages persist to a measurable degree

for at least three generations. This paper pushes this line of research forward by making explicit

the definitions of family background and assumptions required for inferences about a long-run

multigenerational process from sibling and cousin correlations. Given these assumptions, I pro-

vide researchers tools to translate sibling and cousin correlations, which are difficult to interpret,

into comprehensible summaries of the implied persistence of status attainment over many gen-

erations. Through new empirical results and a reassessment of published work, I conclude that

long-run mobility in the U.S. is reasonably well-approximated by models assuming transmission

from parents to children.

(182 words)
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1 Introduction

The extent to which social origins are associated with life chances has long played a cen-

tral role in the sociology of inequality and opportunity. Scholars have typically emphasized cor-

relations between the attainment of parents and children (Blau and Duncan, 1967; Sewell et al.,

1969; Hauser and Featherman, 1977; Hout, 1988; Hout and DiPrete, 2006), yet this approach risks

missing important associations between life chances and other family background characteristics

beyond those of parents, such as the attainment of extended kin. In his presidential address to the

Population Association of America, Mare (2011) challenged this literature to take seriously the

question of how attainment unfolds over more than two generations. At the core of the argument

is a concern about the dynastic persistence of status attainment: if measured parent characteristics

only partially capture the full set of family background characteristics that are associated with life

chances, then simple correlations between the attainment of parents and children may substan-

tially understate the persistence of socioeconomic status over many generations. Motivated by this

concern and empowered by new data sources (Song and Campbell, 2017), a virtual explosion of

research has begun analyzing patterns of mobility over multiple generations (Jæger, 2012; Chan

and Boliver, 2013; Hertel and Groh-Samberg, 2014; Pfeffer, 2014; Wightman and Danziger, 2014;

Huang et al., 2015; Lindahl et al., 2015; Pfeffer and Killewald, 2015; Knigge, 2016; Olivetti et al.,

2016; Ziefle, 2016; Hällsten and Pfeffer, 2017; Pfeffer and Killewald, 2017).

These studies share a common style: authors posit a null model, in which the socioe-

conomic attainment of children is independent of the attainment of extended kin conditional on

parent attainment, and assess the evidence against that null model. One promising way to conduct

this test is to compare the status attainment of siblings and cousins. If siblings’ (cousins’) attain-

ment is similar, this suggests that factors common to siblings (cousins) are strongly correlated with

life chances. Because siblings share their nuclear and extended family while cousins share only

their extended family, a comparison of sibling and cousin correlations provides a useful test of

how attainment may be related to factors in the extended family, without requiring the researcher

to measure the relevant factors (Jæger, 2012; Hällsten, 2014; Knigge, 2016; Pfeffer et al., 2016).
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Although the benefits of sibling and cousin correlations are clear from the perspective of

measurement, these approaches face a serious drawback: the resulting estimates are difficult to

interpret and their connection to long-run mobility processes is non-obvious. The goal of this

paper is to summarize what we learn about multigenerational processes from observed sibling and

cousin correlations. Learning anything requires a specific definition of family background as well

as several assumptions about the order of the process, the sign of associations, and the reliability

with which the outcome is measured. For a researcher willing to defend these assumptions, I

provide statistical tools1 to translate sibling and cousin correlations into interpretable estimates of

the long-run mobility of families. I conduct new analysis of data from the Panel Study of Income

Dynamics (PSID) and reassess published evidence. Results challenge the substantive conclusions

of much existing research and suggest that multigenerational attainment processes in the U.S. are

reasonably well-approximated by the classical first-order Markov model in which advantages are

transmitted one generation at a time.

2 Multigenerational attainment processes

Classical status attainment models frequently relied on data covering only two generations

and therefore limited the study of family background to the correlation between parent and child

outcomes (Blau and Duncan, 1967; Sewell et al., 1969). For this to represent the total association

of life chances with family background, one would need to assume a first-order Markov process

in which status attainment of offspring (Yt) is conditionally independent of all prior generations

(. . . , Yt−3, Yt−2) conditional on parent attainment (Yt−1).

Definition 1. In a first-order Markov process, attainment in generation t is independent of attain-

ment in all prior generations conditional on attainment in generation t− 1. Formally,

Yt⊥⊥{Yt−2, Yt−3, . . . } | Yt−1.

The solid black lines in Figure 1 represent this first-order Markov process. Under this

1All software used in this paper will be open-sourced upon publication for use by future researchers.
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process, β1 represents the intergenerational correlation in Y , and βk
1 captures the correlation of

the attainment of ancestors and descendants separated by k generations. Because β1 < 1, the

process decays geometrically toward zero, effectively wiping out the benefit of having high-status

ancestors in only a few generations. As Becker and Tomes (1986, p. S28) concluded from this

assumed model, “practically all the advantages or disadvantages of ancestors tend to disappear in

only three generations.”

• • • Yt−6 Yt−5 Yt−4 Yt−3 Yt−2 Yt−1 Yt
β1 β1 β1 β1 β1 β1

β2 β2 β2 β2 β2

Fig. 1. First-order (solid black) and second-order (all lines) Markov transmission processes

This conclusion is not warranted, however, if the true mobility process involves a higher-

order Markov process, such as the second-order process represented by the solid black and dashed

blue lines in Fig. 1. Under this model, the correlation of offspring attaiment with attainment in

prior generations is more complicated: the correlation between a child and their parent is β1

1−β2

, and

the correlation between a child and their grandparent is
β2

1

1−β2

+ β2 (see Appendix A).

Definition 2. In a second-order Markov process, attainment in generation t is independent of

attainment in all prior generations conditional on attainment in generation t−1 and t−2. Formally,

Yt⊥⊥{Yt−3, Yt−4, . . . } | {Yt−1, Yt−2}.

A brief example clarifies that the distinction between these processes is not a mathematical

curiosity but a fundamental research question with implications for the long-term well-being of

families. Suppose we observe that parents’ incomes and the incomes of their children are corre-

lated 0.5. Two scenarios (among many) that could produce this intergenerational correlation are

a first-order Markov process with β1 = 0.5 or a second-order Markov process with β1 = 0.4

and β2 = 0.2. The distinction between these two processes becomes most pronounced when we

extrapolate to the implied correlation between attainment in generation t and attainment many

generations later. In this scenario, the correlation between income attained by those separated by
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five generations would be 0.55 ≈ 0.03 under the first-order model, compared with 0.13 under the

second-order model (see Appendix A for derivation of these values). In fact, it would take a gap

of nine generations before the second-order process would produce a multigenerational correlation

below 0.03, the value achieved by the first-order process in only five generations. As this example

shows, the distinction between a first- or second-order Markov process has implications for the

dynastic quality of multigenerational mobility (see Fig. 2).
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Fig. 2. Multigenerational correlations in socioeconomic attainment under two regimes which both

produce a parent-child correlation of 0.5. Socioeconomic status exhibits more long-run persistence

if transmission follows a Markov chain of order 2.

Although a second-order parameter β2 may substantially increase the dynastic persistence

of socioeconomic status over many generations, an early evaluation of the two models found no

substantial association between grandparent status and grandchildren’s education or occupational

attainment net of parent characteristics in a sample of Wisconsin high school graduates from the

class of 1957 (Warren and Hauser, 1997). In other words, β2 in Fig. 1 was approximately zero.

But might it be non-zero in other contexts?
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2.1 Theories of complex multigenerational associations

Numerous theories suggest that extended families might play critical roles in children’s

lives through pathways including resource compensation, wealth transmission, role modeling,

or direct involvement in the socialization process. Under each of these theories, a second-order

Markov transmission process is plausible. While I will discuss these theories from the perspec-

tive of grandparents for concreteness, they represent associations that could arise from any family

member shared by cousins, such as an aunt or uncle.

Theories of resource compensation suggest that extended kin may provide material re-

sources when parents fall short (Jæger, 2012; Ziefle, 2016). As a concrete example of the resource

compensation perspective, many families formed multigenerational households during the Great

Recession (Mykyta and Macartney, 2011), often relying on extended family as a private safety net

(Pilkauskas et al., 2014). Even before the Great Recession, an estimated 24% of American chil-

dren born in 2001 lived with their grandparents at some point between birth and age 5 (Pilkauskas

and Martinson, 2014). If the safety net provided by extended family members is more available to

children whose grandparents have high levels of status attainment, this could produce a violation

of the Markov assumption such that children of downwardly mobile parents experience upward

counter-mobility (Chan and Boliver, 2013).

Wealth transmission may confer numerous advantages on offspring regardless of whether

parents have been downwardly or upwardly mobile. Wealth typically must be accumulated over

a lifetime, so that even well-off parents may not have the requisite wealth to confer benefits on

their children. Those with wealthy grandparents may benefit from transfers to pay for college or

contribute toward a down-payment on a home, for instance, or may be more inclined to marry

given the financial security that wealthy kin can provide (Pfeffer and Killewald, 2017).

Cultural pathways may also link the outcomes of offspring with those of their grandparents

if descendants look toward ancestors for a role model or a reference frame. The Swedish education

system is highly egalitarian so that it is difficult to “purchase” achievement, yet Hällsten and Pfeffer

(2017) find that grandparent wealth predicts the academic achievement of offspring net of parent
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controls. They argue that those descended from wealthy grandparents know college is possible

and feel a normative push toward high academic achievement. In other words, grandparents may

serve as a reference frame when their descendants make decisions relevant to mobility (Hertel

and Groh-Samberg, 2014). The reference frame of grandparent attainment may also influence

how parents perceive their own status; parents with similar socioeconomic circumstances may

view their own class position through different cultural lenses if they arrived at that position via

upward or downward mobility from the grandparent generation, potentially influencing their own

childrearing practices (Wightman and Danziger, 2014).

Perhaps most directly, grandparents may be directly involved in the socialization of off-

spring in some settings. For instance, multigenerational coresidence is common in China (Zhang,

2004), providing a site in which interactions between grandparents and grandchildren may be nu-

merous. Zeng and Xie (2014) find that the education of Chinese grandparents is associated with

offspring educational attainment net of parents only when grandparents and grandchildren live

together, providing opportunities for direct contact and socialization. In the American context,

the role of direct socialization may be more relevant today than in the past. Given increased life

expectancy and increasing rates of multigenerational coresidence (Taylor et al., 2010), more grand-

parents can know and interact with their grandchildren through a longer portion of development

than they did in the past (Bengtson, 2001; Uhlenberg, 2004; Seltzer and Bianchi, 2013). Direct

socialization may therefore represent an increasingly important cultural pathway even in societies

like the U.S. in which multigenerational coresidence has not historically been common.

2.2 Linking intragenerational correlations to multigenerational processes

Despite the theoretical appeal of a component of life chances shaped by extended family

members, this quantity is empirically difficult to estimate within an intergenerational framework

because it is very difficult to net out all association of offspring attainment with parent character-

istics in order to discover the residual association with grandparent characteristics. If grandpar-

ent attainment is associated with offspring attainment net of measured parent characteristics, this
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could represent a direct association or could represent an indirect association of grandparent and

offspring attainment through unmeasured parent characteristics.

Sibling and cousin correlations may solve this problem by serving as an “omnibus” measure

to capture the total influence of family background (Solon et al., 2000), sidestepping the need to

measure characteristics in the parent and grandparent generations. Inference about the underlying

multigenerational process, however, remains several steps removed from what the data can show:

it requires a definition of family background which may or may not be useful as well as three

assumptions about the order, sign, and measurement precision of the multigenerational process.

2.2.1 Defining family background

Sibling and cousin correlations are informative about the association between life chances

and family of origin only under a very particular definition of family background.

Definition 3. For sibling correlations to be informative about intergenerational transmission, fam-

ily background must be defined as all characteristics shared by siblings.

This definition accords with a quantity of theoretical interest insofar as the fluidity of soci-

ety is related to the ability of individuals to move away from the attainment that would be expected

given the characteristics they share with their siblings. In many theories of intergenerational pro-

cesses, the relevant aspects of family background are in fact shared by siblings. Blau and Duncan’s

(1967, p. 170) basic model of stratification, for instance, included only father’s education and

occupation as the key variables from one’s family background associated with one’s own attain-

ment. To the extent to which father’s education and occupation are constant over the period in

which children are raised, these factors are incorporated into sibling correlations. Alternatively,

father’s occupation may not be constant over time, especially in recent decades characterized by

precarious work and reduced opportunities for stable, long-term careers (Kalleberg, 2009). Sib-

lings born many years apart could be exposed to substantially different occupations held by the

same father, yet these different exposures would not be considered part of “family background”

by the definition above because they are not shared by siblings. Sibling correlations may therefore
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be informative about a quantity that omits aspects that we would theoretically consider central a

meaningful definition of family background.

As an extreme example, Conley (2008) describes a world in which parents have tremendous

influence over the life chances of two children, forcing the oldest child to sacrifice everything to

support the youngest child. In this world, the oldest child in every family might attain no education

and no income, producing a correlation of zero between the positive attainment of the youngest

child and the constant lack of any attainment for the oldest child. By the definition above, the

relationship between offspring attainment and family background would also be 0; siblings do not

share any relevant inputs to the attainment process. Our intuition that family background is very

influential in this case suggests a shortcoming of the definition of family background for which

sibling correlations are informative.

Likewise, the definition of family background above includes factors that researchers may

not wish to include in a theoretically-motivated definition of the concept. Suppose parents have no

influence over the life chances of children, but all children follow closely in the footsteps of the

eldest sibling. The first-born sibling goes to college, and subsequent children follow. The first-

born chooses a particular profession, and subsequent children follow suit. Here, all siblings share

in common the first sibling’s attainment decisions, yet this factor would not fall under the umbrella

that we would usually define as family background. In this case, it is possible that child outcomes

would be completely independent of parent outcomes, yet the sibling correlation could be close to

one.

To draw inferences about a second-order process from sibling and cousin correlations, one

must adopt a similar definition of extended family background.

Definition 4. For cousin correlations to be informative about multigenerational transmission, ex-

tended family background must be defined as all characteristics shared by cousins.

The concerns that applied to sibling correlations carry over to cousin correlations. If grand-

parents worked full-time while early-born cousins were raised but retired and became deeply in-

volved in the lives of later-born cousins, this would fall outside the scope of “extended family
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background” in the definition above and would be missed by inferences relying on cousin corre-

lations. If all cousins follow the career trajectory set in place by the first-born cousin, this could

produce sizable cousin correlations despite no influence of prior generations on these shared tra-

jectories. As these examples demonstrate, the definition of family background required for multi-

generational inference from intragenerational correlations, which requires counting as extended

family background all variables shared by cousins, may be suboptimal.

Given the gap between the influence of family background and the quantity that is estimable

by sibling correlations, prior research disagrees on the utility of sibling and cousin correlations for

the study of family background. Some authors find the approach reasonable and write that a sibling

correlation “primarily reflects the influence of. . . background factors” (Blau and Duncan, 1967, p.

317), captures the share of inequality that “may be attributed to family background,” (Mazumder,

2008, p. 686), summarizes the “global impact of family background” [p. 109](Conley et al.,

2007), or suggests that “unmeasured parent characteristics also exert considerable impact on son’s

earnings,” (Corcoran et al., 1976, p. 435). Others have made limited claims such as that within-

group similarities provide “an upper bound on the influence” of membership in the group under

study (Solon et al., 2000, p. 383). Still others find the definition so absurd that sibling similari-

ties “should not be interpreted, except tautologically, as reflecting the force of family influences,”

(Griliches, 1979, p. S59).

I take a middle position of treating sibling and cousin correlations as imperfect proxies for

the total influence of family background. For the most part, parent characteristics may be constant

over the course of child development; dramatic mid-life career changes, for instance, may be the

exception rather than the norm. It is possible that parents invest differentially in their children, but

differential investment may be relatively minor compared with common benefits bestowed all chil-

dren by well-resourced parents and grandparents. Siblings may influence each other, but perhaps

not to the same degree as parents influence them jointly. If these assumptions approximately hold,

then it may be reasonable to proceed to draw inferences about multigenerational processes from

intragenerational correlations, albeit with caution.
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2.2.2 Three key assumptions: Order, sign, and measurement

Accepting the definitions of family background above, the connection between sibling and

cousin correlations and multigenerational processes still requires three key assumptions about the

order of the process, the sign of associations, and the precision with which the outcome is mea-

sured.

Assumption 1. Researchers must assume the order of the multigenerational transmission process.

Any inference about a multigenerational process first requires an assumption about the or-

der of that process: that offspring attainment is independent of attainment more than k generations

in the past given attainment the preceding k generations. This assumption is typically constrained

by the data at hand. Data including siblings but not cousins, for instance, are uninformative about

the association of attainment with extended as opposed to nuclear family characteristics because

siblings share both their nuclear and extended families. This makes it impossible to distinguish

between a first and second-order model with these data. With data on siblings and cousins, one

can assume a second-order model in which grandparents’ attainment is associated with offspring

attainment independent of parents. The second-order model contains the first-order model as a

special case, so the distinction between these is estimable. One must, however, assume away a

third- or higher-order model by assuming that great-grandparent attainment is independent of off-

spring attainment net of parents and grandparents. As with the definition of family background,

it is unlikely that the multigenerational process perfectly corresponds to a first- or second-order

model, but these might be reasonable approximations to the extent to which the attainment of

great-grandparents and earlier kin are associated with offspring attainment net of the intervening

generations in only negligible ways.

Assumption 2. Researchers must assume the values of structural parameters among several can-

didates that are equally consistent with the data. In a second-order Markov process, this involves

assuming the sign of the first-order parameter and selecting among up to three possible values for

the second-order parameter.
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Suppose the multigenerational mobility process can be adequately summarized by a second-

order Markov model with unknown parameters β1 and β2. Suppose also that income is reported

with reliability η, which represents the correlation between true and reported income (see Assump-

tion 3). Equations 1 and 2 state the sibling and cousin correlations implied by this model. Proofs

are provided in the Appendix, and the discussion here is only intended to build intuition. If we

randomized the incomes of parents and grandparents, each child’s income would be correlated β1

with parent income and β2 with grandparent income. For siblings who share their parents and

grandparents, the resulting sibling correlation would be β2
1 + β2

2 . Because parent and grandparent

incomes are not randomized, these two inputs are themselves correlated producing an additional

adjustment term 2
β2

1
β2

1−β2

. Finally, reporting error reduces the sibling correlation in reported attain-

ment Y by the multiplicative factor η2 (where η < 1), because each sibling provides a report that

is only correlated η with the truth. In general, η is not estimable from the data (see Assumption 3).

ρSiblings = Cor
(

Ỹt,a, Ỹt,b

)

= η2
(

β2
1 + β2

2 + 2
β2
1β2

1− β2

)

(1)

Equation 2 for the cousin correlation is similar except that the β2
1 term is multiplied by

ρSiblings to account for the fact that cousins do not have the same parents but instead have parents

whose attainment is correlated ρSiblings because they are siblings.

ρCousins = Cor
(

Ỹt,aa, Ỹt,bb

)

= η2
(

β2
1ρSiblings + β2

2 + 2
β2
1β2

1− β2

)

(2)

Reversing the process, now suppose we observe the sibling and cousin correlations and

want to infer the structural parameters β1 and β2 that could have produced those correlations under

the model above. Equations 1 and 2 can be rearranged to yield the following formulas for the

structural parameters (proofs are provided in Appendix C).
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β1 = ±

√
√
√
√

1
η2
ρSiblings −

1
η2
ρCousins

1− 1
η2
ρSiblings

← Difference in sibling and cousin correlations in Y

← Proportion of variance in Y that is between families
(3)

0 = β3
2 − β2

2 −

(

β2
1 +

1

η2
ρSiblings

)

β2 +

(
1

η2
ρSiblings − β2

1

)

(4)

Equations 3 and 4 are noteworthy in that the solution is not unique. First, an observed

set of sibling and cousin correlations is completely uninformative about the sign of β1; this term

enters Eq. 1 and 2 only in squared form. Substantively, a positive sibling correlation could be

generated by either a positive or a negative correlation β1 between child attainment and a shock to

parent attainment. One might reasonably assume that this correlation would be positive, as children

reproduce the socioeconomic outcomes of their parents. This assumption, however, requires theory

or additional data beyond the observed intragenerational correlation. The choice is non-obvious;

compelling theories also exist to suggest that the intergenerational correlation is negative. For

instance, children may systematically rebel against their parents, vowing to take a different life

trajectory. The children of a CEO may achieve correlated outcomes because both are spoiled and

end up in the working class. Likewise, the children of working-class parents may develop an

especially strong work ethic and ascend the hierarchy to attain correlated outcomes as business

executives. In the absence of additional analyses, each of these stories is equally consistent with

the evidence provided by an observed sibling correlation.

Even after assuming a sign on β1, an observed set of sibling and cousin correlations may be

generated by up to three possible values of β2: the roots of the polynomial in Eq. 4. To make the

possibilities concrete, suppose we estimate a sibling correlation of 0.25 and a cousin correlation of

0.1. Figure 3 shows the possible values of β1 and β2 that could have generated these correlations

for a given level of assumed measurement reliability η. Under perfect measurement (η = 1), the

blue dot in the upper right quadrant indicates that the observed intragenerational correlations could
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have been generated by β1 = 0.45 and β2 = 0.09. The blue dot in the upper left quadrant indicates

that the same correlation could have been generated by an equivalent negative correlation between

child attainment and a shock to parent attainment. Under either scenario, the correlations could

also have been generated by strong negative values of -.41 for β2. Theory or additional analyses

are required to distinguish these possibilities.

Assumption 3. Researchers must assume the precision with which the outcome is measured as

well as how measurement error is correlated within families.

Measurement error has formed the core of numerous debates in stratification research. As

early as the 1960s, it was known that interpretation of correlations in socioeconomic status depends

on the “assumptions one is willing to defend” about the relationship between measured variables

and true values (Siegel and Hodge, 1968). For instance, while Blau and Duncan (1967) found

substantial returns to education net of family background variables, Bowles (1972, p. S222) called

this conclusion “seriously misleading” due to reporting error in family background variables that

downwardly biased their association with the outcome and produces an overstatement of the returns

to education. Others noted that the debate becomes more complex if measurement error varies by

race (Bielby et al., 1977). In the present-day debate about multigenerational mobility, Ferrie et al.

(2016) argue that apparent correlations between grandparent and offspring incomes conditional on

parent income appear solely because parent income is measured with error. Central conclusions in

the field of mobility research often hinge on assumptions about measurement.

Sibling and cousin correlations are no exception to this rule. Although this approach avoids

the pitfalls of measuring family background characteristics, results are sensitive to measurement

error in the outcome variable. As first noted in the context of sibling correlations (Solon et al.,

1991), intragenerational correlations in measured attainment Ỹ will be less than correlations in true

attainment Y to the extent to which attainment is reported with classical measurement error. On the

other hand, non-classical measurement error such that siblings and cousins tend to over- or under-

report their incomes together may produce sibling correlations in measured attainment that exceed

correlations in true attainment. In many cases, it may be reasonable to assume that measurement
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error is classical and uncorrelated within families. By assuming this structure, one can estimate

the sibling and cousin correlations as a function of a range of possible values of measurement

reliability η by which true and reported attainment are correlated. This is depicted graphically in

Fig. 3 by the shading of the line, covering the range of η from 0.7 to 1.0, approximately the range

of reliability for which many status attainment outcomes are measured (Angrist and Krueger, 1999,

p. 1346). In cases where there is only one observation per person, η must be assumed because the

data are completely uninformative about this quantity.2

With repeated observations, one can reduce this problem by estimating sibling and cousin

correlations in permanent income, netting out all within-person variation. As Solon et al. (1991)

show, sibling correlations are substantially higher with this strategy. This approach, however, re-

quires two caveats. First, the estimand changes when one moves from annual income to permanent

income; these quantities are theoretically distinct. Even with perfect measurement, true sibling cor-

relations in permanent and annual income would be different. Second, permanent income solves

measurement problems only if measurement errors are idiosyncratic. If a given respondent tends

to over-report their income in all years, for instance, this would produce classical measurement

error in permanent income. For this reason, assumptions about the reliability η in the annual in-

come setting translate naturally to similar assumptions about η in the setting of permanent income.

Because one might reasonably assume that η is close to one in the permanent income setting, the

permanent income correlation approach developed by Solon et al. (1991) represents a reasonable

solution if repeated observations are available.

2.2.3 Sensitivity of conclusions to assumptions

One might hope that the long-run persistence of attainment within families is robust to the

assumptions made, but this is not the case. Fig. 4 plots the multigenerational correlation in attain-

ment between an ancestor and their descendants separated by between one and ten generations,

2That the measurement reliability η is not observable in the data has a long history in social science theory;

Northrop (1947) referred to this type of unobservable correlation as an “epistemic correlation” which connects what

we observe in the world with an unobservable theoretical concept.
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Fig. 3. Structural parameters implied by ρSiblings = 0.25 and ρCousins = 0.1.

under the structural parameters presented in Fig. 3. Every line in the plot is equally consistent with

the observed data under a certain set of assumptions. The upper-right quadrant again shows the

familiar case for which β1 ≥ 0 and β2 ≥ 0: the multigenerational correlation decays as the number

of generations increases. The other quadrants, however, show that multigenerational correlations

may oscillate between positive and negative for certain combinations involving a negative value

of β1 or β2. In all cases, the multigenerational correlations depend on the assumed measurement

reliability η because this affects the structural parameters β1 and β2 implied by the observed set of

sibling and cousin correlations.

To summarize, researchers who use intragenerational correlations to infer multigenera-

tional processes must accept a very specific definition of family background and then assume

(1) the order of the transmission process, (2) the sign of the underlying associations, and (3) the

degree of measurement precision. Although these represent many decisions, theory may inform

Assumptions 1 and 2, and prior literature can inform Assumption 3. The next section demonstrates
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how to reason about these decisions in a specific empirical example.
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Fig. 4. Multigenerational correlations implied by ρSiblings = 0.25 and ρCousins = 0.1.

3 Empirical example: Drawing inferences in the PSID

Applying the formal relationships derived above, this section reports sibling and cousin

correlations in age-adjusted log family income in the U.S. and summarizes their implications for

long-run multigenerational mobility processes.
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3.1 Data

The Panel Study of Income Dynamics (PSID, 2017) selected a sample of 1968 households

and interviewed descendants from those households annually through 1999 and biannually there-

after through 2015, producing a sample of individuals nested in family lineages. I restrict to the

Survey Research Center (SRC) sample, for which all households in the contiguous U.S. in 1968

had an equal probability of selection (for a discussion of other samples, see Appendix D). The

SRC sample initially selected 3,000 households, of whom 731 produced descendants two genera-

tions later who were interviewed at ages 25-45. This reduction in the number of families reflects

the combined influence of survey nonresponse, childlessness, delayed fertility, and survey attrition

(see Appendix D). The analytic sample includes 9,076 observations on 2,008 respondents nested

in 1,101 nuclear families in 703 extended families. A total of 1,547 respondents have at least one

cousin in the sample and 1,220 respondents have at least one sibling in the sample. The outcome

variable of interest is log total family income, adjusted to 2014 dollars using the Consumer Price

Index. To reduce the influence of very low family incomes when logged, I bottom-code inflation-

adjusted family incomes at the first percentile ($2,603).

3.2 Estimation

Estimation of sibling and cousin correlations requires a decomposition of the variance of

log family incomes into proportions within and between family groups. The PSID data are struc-

tured in four nested levels: observations, respondents, nuclear families, and extended families. I

denote the proportion of the variance at each level by the vector ~π.

~π =

[

πExtended πNuclear πPerson πObservation

]

(5)

Siblings share both their nuclear and extended family of birth, so the sibling correlation

(ρSiblings) corresponds to the proportion by which the variance of the outcome is reduced by condi-

tioning on both extended and nuclear family of birth. The cousin correlation (ρCousins) corresponds
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to the proportion by which the variance of the outcome is reduced by conditioning on extended

family of birth.

ρSiblings = πExtended + πNuclear (6)

ρCousins = πExtended (7)

The goal of the analysis is to estimate the partition ~π, calculate the implied sibling and

cousin correlations, and use these to calculate estimands of interest related to multigenerational

mobility, such as the expected correlation of an ancestor and a descendant separated by k gener-

ations. Because these estimands of interest are related to the sibling and cousin correlations in

nonlinear ways, translating uncertainty about ~π into uncertainty about the estimands of interest is

difficult. To facilitate reporting of uncertainty, I adopt a Bayesian framework, assume prior distri-

butions on the parameters, and estimate the model by sampling from the posterior. This procedure

makes it easy to calculate uncertainty around quantities of interest; one can simply transform the

posterior samples and summarize the resulting distribution.

The most central choice of prior is the prior distribution on ~π, for which I assume a Dirich-

let(1) distribution that places a uniform density over the simplex of possible partitions. While the

Dirichlet distribution is “flat” in this sense, the marginal distribution for each component of ~π is

not flat; each is a priori expected to be closer to 0 than to 1 because the components must sum to 1.

As an additional complication, the sibling correlation involves the sum of two components and is

by definition no smaller than the cousin correlation. The implied priors on the sibling and cousin

correlations are depicted in Appendix Fig. A1 and place the highest prior density on the 75% of

the distributions covering sibling correlations from 0.22 to 0.78 and cousin correlations from 0 to

0.37. Although not “flat”, any reasonable value for sibling and cousin correlations falls roughly

within these ranges, and the priors include additional support over the full (0,1) interval that would
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be utilized if the data strongly suggest a different value.

~π ≡

[

πExtended πNuclear πPerson πObservation

]

︸ ︷︷ ︸

Partition of V (Y | Age) across levels of nested data

∼ Dirichlet
(

~1
)

(8)

As discussed previously, one solution to measurement error is to estimate sibling and cousin

correlations in permanent income, treating the year-to-year observation-level variance as a nui-

sance (Solon et al., 1991). I estimate the sibling and cousin correlations in permanent income to be

the proportion of the between-person variance component (1− πObservation) that is between nuclear

and extended families, respectively.

ρPermanent
Cousins =

πExtended

1− πObservation

(9)

ρPermanent
Siblings =

πExtended + πNuclear

1− πObservation

(10)

The remainder of the model is not of substantive interest, but is necessary to estimate the

partition ~π. I assume a weakly informative Half-Cauchy prior (Gelman et al., 2008) on the total

variance of age-adjusted log family incomes, which is the absolute value of a Cauchy distribution.

The scale parameter of the Half-Cauchy corresponds to the median of the distribution.

σ2
︸︷︷︸

V(Y |Age)

∼ Half-Cauchy (Scale = 1) (11)

The variance components are connected to the observed outcome Yi[j[k]],t for the k-th per-

son in the j-th nuclear family in the i-th extended family, observed at time t, by a set of normal

priors on the expected age-adjusted log family income at each level. At the level of the data, the

model treats each observation Yi[j[k]],t as drawn from a normal distribution centered at a person-

specific expectation αPerson
i[j[k]] plus an adjustment β

Age
t for the reporting of incomes at different ages.

The variance term σ2πObservation corresponds to the within-person variance in incomes; a society

characterized by substantial income insecurity such that families’ incomes changed rapidly from
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year to year would have a high value of πObservation.

Yi[j[k]],t ∼ Normal(αPerson
i[j[k]] + β

Age
t , σ2πObservation) (12)

The person-specific permanent income αPerson
i[j[k]] itself involves a systematic component shared

within nuclear families and a normal stochastic component with variance σ2πPerson which corre-

sponds to opportunities for mobility of individuals away from the family mean. In a highly fluid

society in which individual attainment was stable over the life course but was only weakly associ-

ated with family background, πPerson would be large.

αPerson
i[j[k]] ∼ Normal(αNuclear

i[j] , σ2πPerson) (13)

The component αNuclear
i[j] of income that is constant within nuclear families likewise repre-

sents the combination of a systematic component shared within extended families and a normal

stochastic component with variance σ2πNuclear, which corresponds to opportunities for mobility of

nuclear families away from the extended family mean. A society in which siblings’ outcomes were

very similar but cousins’ outcomes were very different would have a high value of πNuclear.

αNuclear
i[j] ∼ Normal(αExtended

i , σ2πNuclear) (14)

Finally, the component αExtended
i of income that is constant within extended families repre-

sents a stochastic normal draw with variance σ2πExtended and corresponds to the extent to which the

status attainment of extended families look very different. A society in which advantage persisted

dynastically over three generations with minimal decay would be characterized by a high value of

πExtended.

αExtended
i ∼ Normal(0, σ2πExtended) (15)

The age adjustment in Eq. 12 is needed so that respondents who happen to be observed

at older ages do not appear to have higher incomes than those observed at younger ages simply
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as a result of their age. To flexibly capture the age-income association, I assume a multivariate

normal prior on the age-specific terms ~β with a structured variance matrix with autocorrelation ρ.

Intuitively, this prior regularizes toward a fit in which expected family incomes are similar at nearby

ages, but allows the data to inform if the shape is more complex. In order to achieve a relatively

high degree of smoothness, I rule out negative autocorrelations and place greater prior density on

autocorrelations near 1 with a Beta(1,3) prior on ρ (see graphical depiction in Appendix Fig. A1).

Because I do not have strong prior beliefs about the potential steepness of the association between

age and log family income, I assume a weakly informative Half-Cauchy prior on the marginal

variance σ2
Age.

σ2
Age ∼ Half-Cauchy(0, 1) (16)

ρAge ∼ Beta(1, 3) (17)

~βAge ∼ Normal
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The fitted age-income trajectory is plotted in Appendix Figure A2.

I estimate the model using the rstan package in R (Stan Development Team, 2017) which

simulates from the posterior distribution using Hamiltonian Monte Carlo in Stan. I simulate 10,000

burn-in draws and 10,000 posterior samples from a single chain.3 Point estimates reported are

posterior means. Credible intervals represent the 5th and 95th percentiles of posterior draws. Trace

plots for key parameters of interest are provided in Appendix Figure A3.

3.3 Results

Figure 5 summarizes the estimated sibling and cousin correlations in age-adjusted log fam-

ily income. In Panel A, I assume perfect measurement (η = 1 in Eq. 1 and 2). Under the null

of a first-order Markov model, the estimated sibling correlation of 0.351 would imply an expected

3This procedure took approximately half an hour on a Windows cluster computer with 512 GB of RAM and an

Intel Xeon CPU E7-4850 v3 @2.20 GHz processor.
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cousin correlation of 0.123, calculated by squaring each draw from the posterior distribution and

taking the posterior mean. The observed cousin correlation of 0.158 is slightly higher than ex-

pected under the null model, suggesting the possibility of a non-Markovian process, although the

95% credible interval for the difference includes zero. These results provide non-significant but

suggestive evidence of a small deviation from a first-order Markov process.

Allowing even a modest amount of measurement error in Y , however, yields results that

are consistent with a first-order model. If we assume reported incomes are correlated 0.88 with

true incomes due to measurement error, then the sibling and cousin correlations in true incomes

(Panel B) are higher than those in reported incomes (Panel A), and the observed cousin correlation

exactly equals that expected under the null model. Reviews of measurement in economics often

place the reliability of log earnings in the range of 0.7 to 0.9 (Angrist and Krueger, 1999, p. 1346),

so this amount of measurement error is reasonable. Therefore, the weak evidence against the null

first-order Markov model in Panel A is very weak when measurement error is considered.
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Fig. 5. Sibling and cousin correlations in log family income. Error bars represent 95% credible

intervals.

While the results in Figure 5 follow the established approach in the literature of comparing

to a null model, they do not directly reveal the underlying structural parameters of the second-order

process that would be most consistent with the data. This is important because failure to reject the
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null model does not imply that the results are null; our estimate of β2 may simply be imprecise.

Figure 6 translates the estimated sibling and cousin correlations to the structural parameters β1 and

β2, using the formulas presented in Eq. 3 and 4. Assuming perfect measurement, the observed

sibling and cousin correlations are consistent with four possible parameter values represented by

the blue dots: β1 = ±0.66 and β2 = {0.07,−0.50}. While any combination of these parameters

could have generated the observed data, one might reasonably assume that the shocks to parent

income are beneficial for children (β1 > 0) and shocks to grandparent income are beneficial,

even if an intervention held parent income constant (β2 > 0). These assumptions restrict the set

of possible parameters to those in the upper right quadrant of Figure 6. As in Figure 5, one must

assume the reliability with which the outcome was measured. If the outcome is measured with even

a small amount of error, we would underestimate β1 and overestimate β2. This case is represented

by the green dot in the upper right quadrant, which corresponds to measurement reliability of 0.88

as in Figure 5 Panel B. Under this assumption, the estimated violation of the first-order Markov

assumption is β2 = 0 (95% CI: -.12, .11).

Although sibling correlations and their implied structural parameters may be interesting

in their own right, in many cases the real object of theoretical interest is the implied pattern of

multigenerational mobility. Under the second-order Markov model implied by the data, the dashed

green lines in Figure 7 plot the implied multigenerational correlation in family incomes between

an ancestor in generation 0 and a descendant in generations 1 through 10. The solid blue line

represents the analogous pattern which we would estimate by assuming a first-order Markov model

and estimating the structural parameter β1 from the sibling correlations alone. The left panel

assumes perfect measurement of Y and shows persistence is only slightly higher under the second-

order estimates than under the first-order estimates. The correlation of family incomes separated by

5 generations, for instance, is 0.07 (95% CI: 0.06, 0.09) under the first-order model compared with

0.11 (95% CI: 0.06, 0.15) under the second-order model. As discussed previously, the distinction

could easily be explained by measurement error; assuming measurement reliability of 0.88 yields

slightly higher estimates of multigenerational correlations that are substantively the same under
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Fig. 6. Structural parameters for log family income transmission implied by sibling and cousin

correlations under a second-order Markov model assuming the most positive β1 and β2 consistent

with the observed data. Error bars represent 95% credible intervals.

either model (Panel B).

While the results above yielded minimal evidence against a first-order Markov model, they

also revealed the possibility that in some applications this conclusion could depend on the assumed

measurement reliability. To make an alternative set of assumptions about measurement reliability,

one might shift the target of inference to intragenerational correlations in permanent age-adjusted

log family income, defined as correlations in the ~αPerson parameters that pool information across

multiple time periods (Solon et al., 1991). To the extent to which measurement error is not corre-

lated within individuals, this would fully address the measurement problem. Results are presented

in Figure 8. Point estimates suggest that cousins’ permanent incomes are slightly less positively

correlated under the second-order model than the first-order model (Panel A), though estimates of

the structural parameter are highly uncertain (β2 = -.08, 95% CI = [-.22, 0.05], Panel B). The point

estimates suggest that the multigenerational persistence of permanent incomes is less than expected
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Fig. 7. Multigenerational correlations in log family income implied by sibling and cousin corre-

lations under a second-order Markov model assuming the most positive β1 and β2 consistent with

the observed data. Error bars represent 95% credible intervals.

under a Markov model (Panel C), though results are too uncertain to draw definitive conclusions.

If reporting errors are correlated within individuals such that some individuals consistently over- or

under-report their incomes, this would produce measurement error in permanent income (η < 1).

In this case, results would suggest that β2 is even more negative. Overall, results assessing cor-

relations in permanent incomes reaffirm that any evidence that multigenerational correlations are

greater than would be expected under a Markov model is very weak.

4 Re-evaluating prior research

The preceding sections have outlined a procedure for using sibling and cousin correlations

to draw inferences about multigenerational mobility: estimate intragenerational correlations, com-

pare to the null hypothesis of a first-order Markov model to assess statistical significance, evaluate

the extent of measurement error that would undermine non-Markovian conclusions, and then as-

sess the substantive significance of the results. Prior research, in contrast, has only conducted the

hypothesis test, typically without a formal test of significance and without considering the role
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95% credible intervals.

of measurement error. This section re-evaluates prior research in light of the procedure outlined

above.

What degree of measurement precision is required for published cousin correlations to im-

ply a non-Markovian status transmission process? Table 1 presents published sibling and cousin

correlations and the degree of measurement precision required for them to provide evidence against

a Markov process. In the text, I highlight one estimate from each paper. Overall, published es-
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timates demonstrate that familial advantages persist over three generations; the total association

of cousins’ attainment is substantial. However, only a few estimates provide evidence against a

Markov transmission process, and only under an assumption of very precise measurement.

Analyzing educational attainment in the Wisconsin Longitudinal Study, Jæger (2012) esti-

mates that 14.4% of the variance in years of education is between extended families, and 26.4%

of the variance is between nuclear families within extended families. These estimates indicate a

sibling correlation of 0.144 + 0.264 = 0.407. The estimated cousin correlation of 0.166 does sug-

gest important total grandparent effects, thereby supporting the author’s claim that “factors in the

extended family contribute to the total effect of family background on G3 educational success.”

Estimates do not, however, reject a Markov model in which grandparents transmit these advan-

tages indirectly via parents. Under perfect measurement (η = 1), this sibling correlation would

imply a cousin correlation of ρ
Cousin, implied
Y = 1

η2
ρ

Sibling
Y

2
= 1

1
× 0.4072 = 0.166. This prediction is

very close to the estimated cousin correlation of 0.144, providing no evidence against a Markov

model. Nevertheless, Jaeger concludes, “a two-generation Markov process does not represent the

total effect of family background on educational success,” (p. 913).

Using Swedish register data, Hällsten (2014) estimates that cousins’ years of education

are correlated 0.15, which the author compares to an estimate by Björklund and Jäntti (2012) in-

dicating that the sibling correlation is 0.39. This cousin correlation is approximately the sibling

correlation squared as predicted under a Markov model without measurement error (ρ
Cousin, implied
Y =

1
η2
ρ

Sibling
Y

2
= 1

1
× 0.392 ≈ 0.15). Nevertheless, on the basis of the inability to explain away the

cousin correlation with measured covariates, the author concludes, “unless unobserved character-

istics of parents account for all of the 1st and 2nd cousin correlations, the estimated and adjusted

correlations are clearly incompatible with a Markov process,” (p. 31, emphasis in original). This

conclusion depends on one’s beliefs about whether unobserved parent characteristics might matter

for children’s life chances; if you believe that unobserved parent characteristics might be quite im-

portant (i.e. embodied cultural capital, Bourdieu 1986), then the author’s estimates are compatible

with a Markov process. To argue otherwise, one would have to explain why the cousin correlation
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Sibling correlation Cousin correlation Expected cousin correlation Violates

Author Context Outcome ρ
Sibling
Y ρCousin

Y ρ
Cousin, implied
Y =

1

η2

(

ρ
Sibling
Y

)2

Markovian process?

Jæger (2012) Wisconsin Years of education 0.41 0.14 1

η2 × 0.17 No

Log odds of 0.56 0.21 1

η2 × 0.31 No

college completion

NLSY-CYAa PIAT math score 0.38 0.23 1

η2 × 0.14 Only if |η| > 0.79

PIAT reading score 0.37 0.19 1

η2 × 0.14 Only if |η| > 0.85

Log odds of 0.37 0.14 1

η2 × 0.14 No

high school completion

Years of education 0.37 0.26 1

η2 × 0.14 Only if |η| > 0.73

Log odds of 0.45 0.29 1

η2 × 0.20 Only if |η| > 0.83

college completion

Hällsten (2014) Sweden Years of education 0.39b 0.15 1

η2 × 0.15 No

Occupational prestige 0.29 0.11 1

η2 × 0.08 Only if |η| > 0.87

GPA (9th grade) 0.51b 0.19 1

η2 × 0.26 No

Cognitive ability 0.47b 0.16 1

η2 × 0.22 No

Knigge (2016) Netherlands Occupation status 0.50 0.32 1

η2 × 01 Only if |η| > 0.88

Pfeffer et al. (2016) U.S. Wealth 0.34 0.19 1

η2 × 0.12 Only if |η| > 0.78

Note: In each row above, the assumed correlation between the measured outcome Y and the true value purged of measurement error is η, which is unobserved but

must lie between -1 and 1. An assumption of no measurement error corresponds to an assumption of η = 1. a The original author notes that the NLSY-CYA sample

was very young and highly selected at the time of analysis, so results should be interpreted with caution. This is especially true of the models of college completion

and years of schooling, which appear to violate the Markov assumption but which are estimated on a highly selected sample of respondents whose mothers gave

birth at young ages, such that the respondent was at least 25 years old by the time of data collection. b With the exception of occupational prestige, Hällsten (2014)

does not directly estimate sibling correlations but cites the sibling correlations reported by Björklund and Jäntti (2012).

Table 1. Prior estimates of cousin correlations in socioeconomic and academic outcomes
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is not higher relative to the sibling correlation.

Knigge (2016) studies occupational status attainment in the Netherlands in the late 19th

and early 20th century and estimates a sibling correlation of 0.50 and a cousin correlation of 0.32.

The author notes that this cousin correlation is slightly higher than the 0.25 estimate that would be

predicted by a Markov model. However, if the measure of occupational status is only correlated

η = 0.88 with latent status attainment due to reporting or construct error, this would yield a

Markov prediction of ρ
Cousin, implied
Y = 1

η2
ρ

Sibling
Y

2
= 1

0.882
0.502 = 0.32. The author’s conclusion that

“these results are not congruent with the Markovian model” (p. 1233) thus depends on an unstated

assumption that measurement of status attainment is very precise.

Finally, using PSID data from the U.S., Pfeffer et al. (2016) estimate a sibling correla-

tion in log net worth of 0.34, which implies a cousin correlation of 0.342 = 0.12. The authors

estimate a cousin correlation of 0.19, which is slightly higher than expected and warrants the

authors’ conclusion that “19% of individuals’ wealth attainment can be traced to the common ori-

gins of cousins (i.e. grandparent environments), reflecting concentration of family wealth within

lineages beyond just two generations.” The paper makes no claims about whether this multigen-

erational persistence violates Markovian predictions, but the estimate is consistent with Marko-

vian predictions if the correlation between wealth and latent status attainment is 0.78, so that

ρ
Cousins, implied
Y = 1

η2
ρ

Siblings
Y

2
= 1

0.782
0.342 = 0.19.

Each of the authors discussed above presents additional evidence based on intergenerational

correlations to support their claims, and the purpose of this review is not to discredit the contribu-

tion of these authors. Their estimates have brought a novel framework to bear on an old question,

yielding an important result: grandparent advantages continue to be associated with life chances

two generations later. However, the estimates provide less compelling evidence with respect to

direct grandparent associations: cousin correlations are not substantially greater than would be

expected if the status transmission process operates from parent to child.
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5 Limitations

Whether the process of status transmission can be represented by a first-order Markov

process may be context-dependent. The context of mid-20th century Wisconsin, for instance, might

have been a period in which transmission operated under this regime (Warren and Hauser, 1997).

The transmission process in rural China, on the other hand, may be quite different (Zeng and Xie,

2014). It is likewise possible that in the U.S. grandparents may play a direct role in the attainment

of other indicators of socioeconomic status, such a wealth (Pfeffer and Killewald, 2017), even if

family incomes follow a first-order Markov transmission process. Finally, Mare (2011) proposed

that attainment may be especially rigid at the extremes of the distribution, such as among those

living for multiple generations in poor neighborhoods (Sharkey and Elwert, 2011) or those who

benefit from legacy admissions to elite colleges (Karabel, 2006). Future research will need to

evaluate transmission in other contexts, with other outcomes, and in various subpopulations; I

hope that the framework presented in this paper will be useful for this task.

Importantly, conclusions from intragenerational correlations are sensitive to the assump-

tions required and require acceptance of a very particular definition of family background. If

family background affects siblings differently, as in the example of parents investing all resources

in the youngest child and forcing the oldest child to sacrifice for the success of the youngest, re-

sults may be misleading. While this extreme violation may be far-fetched, qualitative evidence

suggests that some resource-constrained families do invest more heavily in one sibling (Conley,

2004). Future work should take seriously the possibilities of complex intra-family dynamics that

would make the variables that are associated with the outcomes of all siblings in common a poor

proxy for the association between family background and life chances.

6 Discussion

Sibling and cousin correlations provide a promising source of information about the as-

sociation between family background and life chances, yet previous literature has not explicitly
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formalized the relationship between these correlations and the underlying multigenerational pro-

cess. This paper clarifies the assumptions under which intragenerational correlations are informa-

tive about multigenerational processes, outlining a procedure to report substantively meaningful

estimates rather than relying on hypothesis testing alone. Fresh analysis of PSID data and a re-

analysis of published research suggest that, once a reasonable degree of measurement error is

assumed, cousin correlations do not deviate substantially from what would be expected in a first-

order Markov transmission process that operates from parent to child.

This paper contributes intragenerational evidence to join recent intergenerational evidence

(Ferrie et al., 2016) indicating that apparent direct grandparent effects that skip from grandpar-

ents to offspring are likely a statistical artifact arising from measurement error. However, readers

are cautioned against interpreting this as a claim that the U.S. is a particularly fluid society: to-

tal grandparent effects (direct + indirect) remain substantial and important, even if they operate

through the parent generation. Cousin correlations in the U.S. and other settings are sizable and

reflect the persistent association between familial advantages and life chances over multiple gen-

erations. In agreement with early work on sibling correlations (Solon et al., 1991), my results

support the notion that the total association between family background on life chances is in many

cases larger than previously believed due to measurement error in socioeconomic outcomes that

reduces estimated sibling and cousin correlations in cross-sectional surveys.

In summary, what do cousin correlations in socioeconomic outcomes tell us? When paired

with sibling correlations, cousin correlations imply a range of possible multigenerational processes

that are consistent with the data under a variety of assumptions. Cousin correlations are also a

clear reminder that processes involving only two generations at a time can still have long-term

correlations with the life chances of future generations, even if these associations may operate

indirectly through the intervening generations. In the case of the U.S. in the late 20th century,

sibling and cousin correlations that account for measurement error demonstrate that the remarkable

extent to which opportunity is constrained at birth reaches far beyond what we might find with

observed measures of socioeconomic advantage, but operates one generation at a time.
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Appendix

A Yule-Walker equations for multigenerational correlations

This section derives the ρk in status attainment Y (standardized to mean 0 and variance

1) for two individuals separated by k generations under a second-order Markov process. These

formulas were originally proposed by Yule (1927) and Walker (1931) and are standard in time

series analysis. The structural regression model for attainment in generation t as a function of

attainment in the prior two generations is given by Eq. 19. The term ǫt represents an independent

error.

Yt = β1Yt−1 + β2Yt−2 + ǫt (19)

Multiply both sides of Eq. 19 by Yt−1 and take the expected value to yield a formula for ρ1, the

correlation in the attainment of parents and children.

YtYt−1 = β1Y
2
t−1 + β2Yt−1Yt−2 + Yt−1ǫt

IE (YtYt−1) = IE
(
β1Y

2
t−1 + β2Yt−1Yt−2 + Yt−1ǫt

)

IE (YtYt−1)
︸ ︷︷ ︸

=Cor(Yt,Yt−1)=ρ1

= β1 IE
(
Y 2
t−1

)

︸ ︷︷ ︸

=V(Yt−1)=1

+β2 IE (Yt−1Yt−2)
︸ ︷︷ ︸

=Cor(Yt−1,Yt−2)=ρ1

+ IE (Yt−1ǫt)
︸ ︷︷ ︸

=0 since independent

ρ1 = β1 + β2ρ1

ρ1 =
β1

1− β2

(20)

Multiply both sides of Eq. 19 by Yt−2 and take the expected value to yield a formula for ρ2,

the correlation in the attainment of grandparents and children.

IE (YtYt−2) = IE
(
β1Yt−1Yt−2 + β2Y

2
t−2 + Yt−2ǫt

)

IE (YtYt−2)
︸ ︷︷ ︸

=Cor(Yt,Yt−2)=ρ2

= β1 IE (Yt−1, Yt−2)
︸ ︷︷ ︸

=Cor(Yt−1,Yt−2)=ρ1

+β2 IE
(
Y 2
t−2

)

︸ ︷︷ ︸

=V(Yt−2)=1

+ IE (Yt−2ǫt)
︸ ︷︷ ︸

=0 since independent

ρ2 = β1ρ1 + β2 =
β2
1

1− β2

+ β2

(21)
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To generalize the formula to the correlation between two individuals separated by an ar-

bitrary number of generations k, multiply both sides of Eq. 19 by Yt−k and take the expected

value.

IE (YtYt−k) = IE (β1Yt−1Yt−k + β2Yt−2Yt−k + Yt−kǫt)

IE (YtYt−k)
︸ ︷︷ ︸

=Cor(Yt,Yt−k)=ρk

= β1 IE (Yt−1, Yt−k)
︸ ︷︷ ︸

=Cor(Yt−1,Yt−k)=ρk−1

+β2 IE (Yt−2Yt−k)
︸ ︷︷ ︸

=Cor(Yt−2,Yt−k)=ρk−2

+ IE (Yt−2ǫt)
︸ ︷︷ ︸

=0 since independent

ρk = β1ρk−1 + β2ρk−2

(22)

B Derivation of sibling and cousin correlations from structural

parameters

Building on the results in Appendix A, this section derives the sibling and cousin correla-

tions that result from a second-order Markov transmission process with structural parameters β1

and β2.

Denoting attainment of siblings A and B in generation t by Yt,a and Yt,b and using Eq. 19,

Yt,a = β1Yt−1 + β2Yt−2 + ǫt,a (23)

Yt,b = β1Yt−1 + β2Yt−2 + ǫt,b (24)
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Multiplying Eq. 36 and 37 and taking the expected value,

ρYSiblings = IE (Yt,aYt,b) (25)

= IE [(β1Yt−1 + β2Yt−2 + ǫt,a) (β1Yt−1 + β2Yt−2 + ǫt,b)] (26)

= β2
1 IE

(
Y 2
t−1

)

︸ ︷︷ ︸

=V(Yt−1)=1

+β2
2 IE

(
Y 2
t−2

)

︸ ︷︷ ︸

=V(Yt−2)=1

+2β1β2 IE (Yt−1Yt−2)
︸ ︷︷ ︸

=Cor(Yt−1,Yt−2)=ρ1

(27)

+ IE [(β1Yt−1 + β2Yt−2) ǫt,b] + IE [(β1Yt−1 + β2Yt−2) ǫt,a]
︸ ︷︷ ︸

=0 since error terms independent

= β2
1 + β2

2 + 2β1β2ρ1 (28)

Denoting the observed sibling outcomes Ỹt,a and Ỹt,b and following similar steps,

Ỹt,a = ηYt,a + δt,a (29)

Ỹt,b = ηYt,b + δt,b (30)

ρSiblings = IE
(

Ỹt,aỸt,b

)

(31)

= IE [(ηYt,a + δt,a) (ηYt,b + δt,b)] (32)

= η2 IE (Yt,a, Yt,b)
︸ ︷︷ ︸

=Cor(Yt,a,Yt,b)=ρG,Siblings

+ ηIE (Yt,a, δt,b) + ηIE (Yt,b, δt,a)
︸ ︷︷ ︸

=0 since error terms independent

(33)

= η2ρYSiblings (34)

= η2
(
β2
1 + β2

2 + 2β1β2ρ1
)

(35)

A similar process yields formulas for the cousin correlation under this process. Denoting

the attainment of cousins A and B in generation t by Yt,aa and Yt,bb and using Eq. 19,

Yt,aa = β1Yt−1,a + β2Yt−2 + ǫt,a (36)

Yt,bb = β1Yt−1,b + β2Yt−2 + ǫt,b (37)
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Multiplying Eq. 36 and 37 and taking the expected value,

ρYCousins = IE (Yt,aaYt,bb) (38)

= IE [(β1Yt−1,a + β2Yt−2 + ǫt,a) (β1Yt−1,b + β2Yt−2 + ǫt,b)] (39)

= β2
1 IE (Yt−1,aYt−1,b)

︸ ︷︷ ︸

=Cor(Yt−1,aYt−1,b)=ρG,Siblings

+β2
2 IE

(
Y 2
t−2

)

︸ ︷︷ ︸

=V(Yt−2)=1

(40)

+ β1β2 IE (Yt−1,aYt−2)
︸ ︷︷ ︸

=Cor(Yt−1,a,Yt−2)=ρ1

+β1β2 IE (Yt−1,bYt−2)
︸ ︷︷ ︸

=Cor(Yt−1,b,Yt−2)=ρ1

+ IE [(β1Yt−1,a + β2Yt−2) ǫt,b] + IE [(β1Yt−1,b + β2Yt−2) ǫt,a]
︸ ︷︷ ︸

=0 since error terms independent

= β2
1ρ

Y
Siblings + β2

2 + 2β1β2ρ1 (41)

Denoting the observed cousin outcomes Ỹt,aa and Ỹt,bb and following similar steps, we derive the

correlations in the observed values.

Ỹt,aa = ηYt,aa + δt,aa (42)

Ỹt,bb = ηYt,bb + δt,bb (43)

ρCousins = IE
(

Ỹt,aaỸt,bb

)

(44)

= IE [(ηYt,aa + δt,aa) (ηYt,bb + δt,bb)] (45)

= η2 IE (Yt,aa, Yt,bb)
︸ ︷︷ ︸

=Cor(Yt,aa,Yt,bb)=ρYCousins

+ ηIE (Yt,aa, δt,bb) + ηIE (Yt,bb, δt,aa)
︸ ︷︷ ︸

=0 since error terms independent

(46)

= η2ρYCousins (47)

= η2
[
β2
1ρ

Y
Siblings + β2

2 + 2β1β2ρ1
]

(48)
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C Structural parameters implied by sibling and cousin corre-

lations

Starting with the sibling and cousin correlation formulas derived in Appendix B, we can

rearrange terms to produce formulas for the structural parameters β1 and β2 for a given set of sibling

and cousin correlations {ρY,Siblings, ρY,Cousins} and an assumed level of measurement reliability η.

ρYCousins = β2
1ρ

Y
Siblings + β2

2 + 2β1β2ρ1 (49)

ρYSiblings = β2
1 + β2

2 + 2β1β2ρ1 (50)

Subtract 49 from 50

ρYSiblings − ρYCousins =
(
1− ρYSiblings

)
β2
1 (51)

β1 = ±

√

ρYSiblings − ρYCousins

1− ρYSiblings

(52)

= ±

√
√
√
√

1
η2
ρSiblings −

1
η2
ρCousins

1− 1
η2
ρSiblings

(53)

Solve 50 for β2

ρYSiblings = β2
1 + β2

2 + 2β1β2ρ1 (54)

= β2
1 + β2

2 + 2β2
1

β2

1− β2

(55)

(1− β2)ρ
Y
Siblings = β2

1(1− β2) + β2
2(1− β2) + 2β2

1β2 (56)

0 = β2
1(1− β2) + β2

2(1− β2) + 2β2
1β2 − (1− β2)ρ

Y
Siblings (57)

0 = −β3
2 + β2

2 +
(
β2
1 + ρYSiblings

)
β2 + β2

1 − ρYSiblings (58)

0 = β3
2 − β2

2 −
(
β2
1 + ρYSiblings

)
β2 − β2

1 + ρYSiblings (59)

0 = β3
2 − β2

2 −

(

β2
1 +

1

η2
ρSiblings

)

β2 +

(
1

η2
ρSiblings − β2

1

)

(60)
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D PSID sample selection

The original 1968 PSID sample contained two groups: the Survey of Economic Oppor-

tunity (SEO) sample and the Survey Research Center (SRC) sample. The SRC sample was a

multistage probability sample of households in the contiguous 48 states in which every household

had equal probability of selection. The SEO sample represents households residing in Standard

Metropolitan Statistical Areas (SMSAs), with the exception of the South which included non-

SMSAs, and was drawn from a sample used by the Census bureau to study economic opportunity

among low-income households. A substantial share of the SEO sample was dropped in 1997 to

reduce costs. In the SRC sample, over 98% of observations on grandchildren at ages 25-45 oc-

cur in 1997 or later, rendering the 1997 reduction in the SEO sample important for this particular

application. Because the two samples are distinct and because it is much easier to assess the rep-

resentativeness of the SRC sample, I treat the two samples separately in all analyses, reporting

results for the SRC sample in the main text and the SEO sample in the appendix.

In addition to the samples that began in 1968, the PSID added refresher samples of Latino

and immigrant families in 1990 and 1997, respectively. I exclude these samples from all analysis

because they have not been followed long enough to produce sizable samples of grandchildren

descended from the sampled families.

Not all families from the initial 1968 SRC sample have descendants who contribute to the

analytic sample, reflecting a combination of fertility processes and survey attrition. As shown

in Table A1, the analytic sample includes grandchildren descended from only 703 of the 3,000

households originally sampled. Some households initially sampled in 1968 were childless or had

children who had already moved out of the home before the initial interview, and therefore were

not followed. In the SRC sample, 998 households had no children in the household in 1968 despite

the head and the wife (if applicable) being 40 or more years old. These families were likely either

childless or had children who had already moved out of the household, leaving only 1,932 house-

holds that responded in 1968 and might plausibly have descendants who the PSID would attempt

to follow. Given that 1,523 families have descendants who were actually interviewed, attrition
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appears to be comparably minor. The reduction in sample size between the 1,523 households with

descendants and the 1,171 households with grandchildren likely reflects a combination of survey

attrition and childlessness in the second generation. The reduction from 1,171 households with

grandchildren to 703 households with grandchildren observed at ages 25-45 likely reflects a com-

bination of survey attrition and delayed fertility such that some grandchildren were not yet 25 years

old by the end of data collection. The overall reduction in the sample size from 3,000 sampled SRC

families to an analytic sample of descendants from 703 families should give the reader pause about

the representativeness of this sample because it suggests the possibility of non-random attrition.

Given the arguments above, however, it is important to remember that factors other than attrition

such as childlessness would produce a reduction even if survey response rates were perfect. Given

that no other data exist to answer the research question, this paper proceeds cautiously with the

understanding that the analytic sample may not accurately represent the population due to survey

attrition.4

SRC sample SEO sample

(main text) (appendix)

Sampled households 3,000 2,000

Interviewed in 1968 2,930 1,872

With descendants in the PSID 1,523 1,100

With grandchildren in the PSID 1,171 881

Analytic sample observed at ages 25-45:

Extended families 703 365

Nuclear families 1,101 589

Persons 2,008 998

Observations 9,076 3,968

Table A1. PSID sample restrictions. The SRC sample represents a cross-section of American

households in 1968, whereas the SEO sample includes low-income households selected through

a more complex process. The main text reports estimates on the cross-sectional SRC sample.

Estimates using the SEO sample are provided in the Appendix.

To assess the robustness of the results to the choice of sample, I estimated an alternative

4If one is willing to assume that attrition is ignorable given observed values, the PSID weights may address attrition

and produce representative estimates. Unfortunately, the use of weights in Bayesian models is an area of active research

with no clear answers (i.e. Si et al. 2015). The use of these models is critical in this application, because non-Bayesian

models do not yield reliable uncertainty estimates (see Section 3.2). I therefore rely on unweighted models with the

equal-probability SRC sample, producing estimates that may be biased only to the extent that attrition is non-random.
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set of models using the SEO sample. To the extent to which results differ in the SEO vs. the SRC

sample, it would suggest that multigenerational processes may differ among low-income urban

families as opposed to American families in general. In agreement with the SRC sample results

from the main text, Fig. A4 shows that cousin correlations in annual age-adjusted log family

income in the SEO sample are slightly higher than expected given the sibling correlations, but that

the difference disappears if one assumes measurement reliability of 0.84. The estimated sibling

and cousin correlations are almost exactly the same as those from the SRC sample (Fig. 5), and

the implied structural parameters (Fig. A5) and long-run pattern of mobility (Fig. A6) are likewise

similar to those presented in the main text (Fig. 6 and 7). Similarly, estimates of sibling and cousin

correlations in permanent income are very similar in the SEO sample (Fig. A7) to those reported

for the SRC sample (Fig. 8). Overall, the choice of sample seems to be relatively unimportant.
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E Supplemental figures

C. Marginal Beta(2,2) prior on sibling
correlations implied by joint Dirichlet(1)

prior on variance component proportions

D. Marginal Beta(1,3) prior on cousin
correlations implied by joint Dirichlet(1)

prior on variance component proportions

A. Half−Cauchy(Scale = 1) prior
on variance terms

B. Beta(3,1) hyperprior on autocorrelation
of age coefficients
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Fig. A1. Graphical depiction of prior distributions

45



−0.2

−0.1

0.0

0.1

0.2

25 30 35 40 45

Age

C
o

e
ff
ic

ie
n

t

Fig. A2. Estimated association between age and log family income
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Fig. A3. Trace plots showing Hamiltonian Monte Carlo sampling for the proportion of the variance

at each level for age-adjusted log family income.
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Fig. A4. SEO sample estimates of sibling and cousin correlations in log family income. Error bars

represent 95% credible intervals. Analogous SRC sample estimates are provided in the main text,

Fig. 5.
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Fig. A5. SEO sample estimates of structural parameters for log family income transmission im-

plied by sibling and cousin correlations under a second-order Markov model assuming the most

positive β1 and β2 consistent with the observed data. Error bars represent 95% credible intervals.

Analogous SRC sample estimates are provided in the main text, Fig. 6.
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Fig. A6. SEO sample estimates of multigenerational correlations in log family income implied by

sibling and cousin correlations under a second-order Markov model assuming the most positive β1

and β2 consistent with the observed data. Error bars represent 95% credible intervals. Analogous

SRC sample estimates are provided in the main text, Fig. 7.

48



 0.52

 0.27  0.26

−0.010.0

0.2

0.4

0.6

1. Sibling
correlation

2. Expected
cousin

correlation
under null

3. Observed
cousin

correlation

Difference
(3) − (2)

In
tr

a
g
e
n
e
ra

ti
o
n
a
l 
c
o
rr

e
la

ti
o
n

A. Sibling and cousin correlations

●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

β1
β 2

B. Implied structural
parameters

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10

Generations elapsed

M
u
lt
ig

e
n
e
ra

ti
o
n
a
l 
c
o
rr

e
la

ti
o
n

Markov process of

Order 1

Order 2

C. Implied multigenerational correlations

Fig. A7. SEO sample estimates of sibling and cousin correlations in permanent age-adjusted log

family incomes and the implied mobility regimes with which they are compatible. Error bars and

shaded bands represent 95% credible intervals. Analogous SRC sample estimates are provided in

the main text, Fig. 8.
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