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Abstract

The internet has the potential to improve economic and social wellbeing but billions of
people around the world have never been online. Reliable estimates of internet adoption
traditionally require expensive and time-consuming household surveys. We describe an al-
ternative approach that is dramatically faster and cheaper. Our approach is based on the
insight that internet users are connected to other people through in-person social networks
such as kin, friendship, and contact networks. By interviewing a sample of Facebook users
and anonymously asking about the members of these offline social networks, we can learn
about both people who are online and people who are not online. We describe how we de-
rived our estimator and show initial results that suggest that our approach is promising. Our
design could potentially be adapted to many other settings, offering one way to overcome
some of the major challenges facing survey research in the information age.
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1 Overview

The internet has the potential to improve economic and social wellbeing through a wide range
of different mechanisms, but billions of people around the world have never been online (World
Bank 2016; Hjort and Poulsen 2017). This digital divide in access to a critical modern technology
is an important dimension of inequality in the modern world. People in poor countries use the
internet much less than people in wealthy countries (World Bank 2016). Even within countries
that enjoy high levels of internet adoption, research suggests that access to the internet can be
very unequal by age, gender, income, and race (Van Deursen and Van Dijk 2014; Friemel 2016;
Haight, Quan-Haase, and Corbett 2014; Vigdor, Ladd, and Martinez 2014).

Researchers need to be able to measure the digital divide in order to understand its implications
for inequality and opportunity. Entrepreneurs need to understand what sort of people currently
face barriers in using the internet, and what kind of new products or technologies might help
overcome those barriers. And policymakers who want to implement and evaluate strategies for
making internet access more widely available rely on being able to measure the level and rate of
change in the number of people who have access to the internet.

Reliable estimates of internet adoption are typically based on methodologically rigorous house-
hold surveys or censuses. However, this rigor comes at a price: these surveys can be very costly
and typically take months to design and implement. These limitations are especially problem-
atic because internet adoption appears to be changing on a much faster time-scale than many
conventional indicators of social and economic wellbeing.

To help address this measurement challenge, we develop an alternative approach to estimating
internet adoption that is dramatically faster and cheaper than conventional surveys: we inter-
viewed a sample of Facebook users and asked them whether or not members of their offline
personal networks use the internet. Our approach is based on the insight that internet users are
connected to many other people through in-person social networks such as kin, friendship, and
contact networks. By interviewing a probability sample of Facebook users and asking about the
members of these offline social networks, we can learn about both people who are online and
people who are not online.

Asking survey respondents to report about others is an idea that has independently arisen in
many different substantive areas (see, for example, Sirken 1970; Lavallee 2007; Hill and Trussell
1977; Bernard et al. 1991; Marsden 2005). Our approach can be seen as an extension of this
previous work to the situation where the goal is to learn about everyone in a population, but
respondents are only sampled and interviewed online. Thus, our study is an illustration of one
way to overcome many of the challenges that face the sampling and survey research community
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Figure 1: Network reporting setup: asking people on Facebook to report about their offline
personal networks. (a) An example of a social network based on a symmetric (undirected) social
relationship. (b) A reporting network generated by interviewing nodes 2 and 3. (c) The bipartite
reporting network associated with the reporting network in Figure 1b.

in the information age.

The remainder of the paper begins with Section 2, which provides an overview of the formal
setup that we use to determine which quantities need to be estimated, and how to estimate
them; technical details are provided in Appendix A. Section 3 describes important design deci-
sions, data collection procedures, and the actual estimators that we developed. Section 4 turns
to the empirical results, which suggest that our strategy can be effective as a fast and inex-
pensive approach to estimating internet adoption; the results also point to several areas that
the methodology could potentially be improved. Finally, Section 5 concludes by discussing the
implications of our approach for the changing landscape of sampling and survey research in the
information age.

2 Setup

Our strategy for obtaining fast and inexpensive estimates of internet adoption is based on asking
Facebook users to report about internet adoption among other people they are connected to in
their everyday, offline personal networks. The challenge is to determine how to turn people’s
anonymous reports about their personal network members into estimates of internet adoption.
We now explain how we used a formal framework called network reporting to understand which
quantities we need to estimate in order to accomplish our goal (Feehan 2015; Feehan and Salganik
2016a).

Figure 1 illustrates the general setup with an example. Figure 1a shows six people who are
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connected together in a social network. The network relation is symmetric, meaning that when-
ever person A is connected to person B, then B is also connected to A. We make a distinction
between nodes that can potentially be sampled and interviewed—the frame population—and
other nodes. For example, a frame population might be cell phone users; the users of a specific
app such as Facebook; or people who live at addresses that can be reached by postal mail. In
Figure 1, nodes 2 and 3 are in the frame population.

Figure 1b shows the reporting network that is generated when both nodes 2 and 3 are interviewed
about the people they are connected to in the social network. The reporting network is different
from the social network: the social network has an undirected edge A − B when A and B
are socially connected; the reporting network, on the other hand, has a directed edge A → B

whenever A reports about B. When reporting is accurate, there will be structural similarities
between the social network and the reporting network, but this need not be true in general. The
reporting network is a useful formalism that can help researchers develop estimators, understand
possible sources of reporting errors, and derive self-consistency checks.

Figure 1c shows a rearrangement of Figure 1b that is helpful for deriving estimators from a
reporting network. On the left-hand side of Figure 1c is the set of nodes that makes reports
(the frame population), and on the right hand side is the set of nodes that can be reported
about (the universe)1. Drawn this way, every report must connect a node on the left-hand side
to a node on the right-hand side. Thus, the total number of reports that leaves the left-hand
side must equal the total number of reports that arrives at the right-hand side. Mathematically,
this means that when everyone in the frame population is interviewed, we have the following
identity:

# internet users = NH =

# reported connections from
people on FB to internet users︷ ︸︸ ︷

yF,H

v̄H,F︸ ︷︷ ︸
average number of times each
internet user gets reported

(1)

The denominator of Equation 1 is a quantity called the visibility of internet users. Intuitively,
if we simply added up the number of reported internet users, we would get a number that is
larger than the total number of internet users because each internet user can be reported more
than once. Dividing by the visibility accounts for this fact.

1Note that a particular node can appear in both sides if it is in the frame population and in the universe.
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3 Data collection and estimators

Each survey interview took place in two phases: in the first phase, survey respondents were
asked to report the size of their personal networks (e.g., “How many people did you share food
or drink with yesterday?”). Next, we wanted to obtain information about internet use among the
members of each respondent’s personal network. Ideally, we would ask for information about
every single person in the respondent’s network one by one. However, this approach seemed
likely to produce unacceptable levels of respondent fatigue. Therefore, in the second phase of
the interview respondents were asked for information about the three members of their personal
networks who ‘came to mind’ first (Figure 2). We call these people that we obtain additional
information about detailed alters2.

The identity in Equation 1 would hold if we obtained a census of monthly active Facebook users.
In practice, we have a sample and not a census; thus, we construct an estimator for the number
of internet users by developing sample-based estimators for the numerator and the denominator
of Equation 1. We now describe these two components in more detail.

Given information about respondents’ network sizes and the detailed alters’ internet use, the
numerator of Equation 1 (yF,H) can be estimated from our sample with:

ŷF,H =
∑

i∈s

wi
di

ri
oi, (2)

where

• s is the sample of Facebook users
• wi is the expansion weight for i ∈ s

• di is the network size (degree) of i ∈ s

• ri is the number of detailed alters from i ∈ s (ri ∈ {0, 1, 2, 3})
• oi is the number of detailed alters reported to be online

In order to use information about the ri detailed alters to make inferences about the di people
in the respondent’s network, the estimator in Equation 2 makes the additional assumption that
the detailed alters are a simple random sample of respondents’ personal networks. Thus, di

ri

can be seen as a weight that accounts for sampling ri out of the di personal network members.
Previous work on egocentric survey research suggests that, instead of being a simple random
sample, network members who come to mind first may be more likely to come from the same
social context, and may be more likely to be strongly connected to the respondent (Marsden

2We did not ask for any sensitive or personally identifying information about these three detailed alters.
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Figure 2: (a) A survey respondent who is sampled online can be asked to report about
members of one of her offline personal networks (e.g. her kin, friendship, or contact networks).
Her responses contain information about both people who are online and people who are offline.
(b) In order to reduce respondent burden, we asked for more detailed information about internet
use, gender, and age for three detailed alters in each respondent’s personal network.

2005). Therefore, we develop two different ways to assess this assumption: first, we introduce
internal consistency checks that can detect systematic biases that would emerge if detailed alters
are very different from other personal network members (Section 4.1); and, second, we introduce
a sensitivity framework which enables us to formally assess the impact that different magnitudes
of selection bias among the detailed alters would have on our estimates (Appendix B).

The denominator of Equation 1 (v̄H,F ) is a quantity called the visibility of internet users, which
is defined as the number of times that the average internet user would be reported in a census
of active Facebook users. Many different strategies could be used to estimate or approximate
the visibility of internet users; here, we adopt a simple approach: we use the average number
of times that a Facebook user shares a meal with another Facebook user to approximate the
visibility of internet users. This means that we make the assumption that people who are on
Facebook share meals with each other at the same rate that they share meals with people who
are on the internet, but who are not on Facebook. Mathematically, this assumption can be
written

d̄H,F = d̄F,F . (3)
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The condition in Equation 3 requires that two quantities be equal: (1) the rate at which someone
who is on the internet shares a meal with someone who is on Facebook (d̄H,F ); and, (2) the rate
at which someone who is on Facebook shares a meal with someone who is also on Facebook
(d̄F,F ). This assumption could be violated if, for example, people frequently organize sharing a
meal together using Facebook (without inviting other people). We explore how violating this
condition affects estimates as part of a sensitivity analysis in Appendix B and, in Section 5, we
discuss how additional data collection could remove the need for this condition altogether.

Given the condition in Equation 3, we can estimate v̄H,F with an estimator for d̄F,F , the average
number of meals that someone on Facebook reports sharing with someone else on Facebook. In
order to estimate d̄F,F , we use

̂̄
dF,F =

∑
i∈s wi

di

ri
fi∑

i∈s wi
, (4)

where the new quantity, fi, is the number of Facebook users that respondent i reports among
her detailed alters.

Putting Equation 2 and Equation 4 together, we have

N̂H =
ŷF,H

̂̄
dF,F

(5)

=

∑
i∈s wi

di

ri
oi

∑
i∈s wi

di

ri
fi

×
∑

i∈s

wi. (6)

Appendix A has a detailed derivation of the estimator and a precise description of all of the
conditions it relies upon, and Appendix B has a framework for sensitivity analysis which can
be used to understand how estimates are affected by violations of the assumptions that the
estimator relies upon.

Instrument design

We had to make several important design decisions when developing our survey. First, we had to
determine who respondents should be asked to report about. In principle, people can be asked
to report about any type of personal network relationship that is symmetric. Thus, the specific
type of personal network that respondents are asked to report about—the tie definition—is a
study design parameter that researchers are free to vary (Feehan et al. 2016). To explore the
impact of this study design parameter, we randomized survey respondents to report about one of

7



two different tie definitions: the meal tie definition and the conversational contact tie definition
(Table 1). We chose these two tie definitions because (1) previous research led us to believe that
respondents can plausibly report the number of people that they interacted with in the previous
day, avoiding the need to indirectly estimate personal network sizes; (2) researchers have had
success using versions of these tie definitions in previous studies (Feehan et al. 2016; Mossong
et al. 2008).

Table 1: The two different networks survey respondents were asked about.

Meal network Conversational contact network

How many people did you share food or
drink with yesterday? These people
could be family members, friends,
co-workers, neighbors, or other people.
Please include all food or drink taken at
any location, including at home, at work,
at a cafe, or in a restaurant.

How many people did you have
conversational contact with yesterday?
By conversational contact, we mean
anyone you spoke with face to face for at
least three words.

4 Results

We used Facebook’s survey infrastructure to obtain a simple random sample of people who
actively use Facebook in five countries around the world: Brazil, Colombia, Great Britain,
Indonesia, and the United States3. We chose these countries because they span a breadth of
expected levels of internet adoption and economic development. Figure 3 shows the age and
gender distribution of survey respondents for each tie definition4. Respondents were slightly
more female than male in all countries except for Indonesia, and age distributions are typical of
monthly active Facebook users in these countries. All estimates below are weighted to account
for the sample design and to be representative of the universe of monthly active Facebook users
in each country. Estimates of sampling uncertainty are based on the rescaled bootstrap method
(Rao, Wu, and Yue 1992; Rao and Wu 1988; Feehan and Salganik 2016b).

Figure 4 shows the distribution of personal network sizes reported by respondents from each
country, and for each tie definition. The average size of meal networks was smaller than con-
versational contact networks in all countries (Table 2): the average reported size of the meal

3We consider users to be active if they have logged onto Facebook in the 30 days before the survey; we also
restrict responses to people over 15 years old.

4In order to ensure that the survey instrument and methods worked well, we started with a smaller sample in
Great Britain (which is why there are fewer respondents in that country).
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Figure 3: Age and gender of survey respondents in each country. Estimates throughout this
article use sampling weights to account for sample design and nonresponse.
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network varied from about 4 (Great Britain) to about 8 (Indonesia), while the average reported
size of the conversational contact network varied from about 11 (Colombia and Indonesia) to
about 13 (Brazil, Great Britain, and the United States). For both networks, Figure 4 suggests
that there may be heaping in reported network sizes that are multiples of five and ten; this heap-
ing is more evident in the reported number of conversational contacts than for meals, suggesting
that reports about the meal network may more accurate than reports about the conversational
contact network.

4.1 Internal consistency checks

In order to more formally assess the accuracy of reports about each network, we develop internal
consistency checks (Feehan et al. 2016; Bernard et al. 2010). These internal consistency checks
use the information about the age group and gender of each detailed alter that respondents
reported about. The idea is to find reported quantities that can be estimated from the data in
two different ways. To the extent that these independent estimates of the same quantity agree,
the reported network connections are internally consistent. For example, using survey responses
from only men, we can estimate the number of connections between men and women; similarly,
using survey responses from only women, we can estimate the number of connections between
women and men. By definition, these two quantities are equal; thus, under perfect conditions
where our survey does not suffer from any reporting errors or selection biases, we would expect
these two independent estimates to agree (up to sampling noise):

# connections from
men to women = # connections from

women to men .

We devised internal consistency checks based on reported connections to and from each of twelve
different age-sex groups, by country and by tie definition. For each age-sex group α, we estimate
the average number of connections from Facebook users in age-sex group α to Facebook users
not in α (dFα,F−α). We also estimate the average number of connections from Facebook users
not in age-sex group α to Facebook users who are in age-sex group α (dF−α,Fα

). We then define
the average normalized difference ∆α to be

∆α =
1

NF
(d̂Fα,F−α − d̂F−α,Fα

),

where NF is the number of Facebook users in the country, a scaling factor that is intended
to make it easier to compare across countries. In the absence of any reporting error, selection
biases, or sampling variation, we would expect ∆α = 0. On the other hand, it is possible that
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Figure 4: Estimated degree distributions for the conversational contact network (left) and the
meal network (right). The vertical line on each panel shows the average. Average personal
network size is smaller for the meal network than for the contact network; further, the contact
network shows greater evidence of heaping on multiples of 5 and 10 than the meal network.
These findings are consistent with a hypothesized tradeoff between the quality and the quantity
of information reported in personal networks. Responses higher than 30 are coded as 30 in these
plots.
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∆α > 0; that can happen if either there is homophilic selection bias in the respondents’ choice
of detailed alters or if members of group α are especially inconspicuous; similarly, ∆α < 0 can
result from heterophilic selection bias in respondents’ choice of detailed alters or if members of
group α are especially conspicuous.

Figure 5 shows the average normalized difference (∆α) for internal consistency checks based on
reported connections to and from each of twelve different age-sex groups, by country and by
tie definition. Several notable features emerge from Figure 5. First, for many of the internal
consistency checks, the averaged normalized differences are very close to zero, or have confidence
intervals that contain zero. Second, Figure 5 suggests that reports based on the meal network
are more internally consistent than reports based on conversational contact (confirmed below).
Third, there appears to be no universal pattern that describes deviations in internal consistency
checks that are not close to zero. In Indonesia the average normalized differences for younger
age groups suggest that females may be relatively inconspicuous while males are relatively con-
spicuous5. On the other hand, in Brazil and Colombia, younger women appear to be particularly
inconspicuous. And in Great Britain and the United States, most of the IC checks suggest that
reports are internally consistent.

Figure 6 directly compares the difference in internal consistency results for the conversational
contact and meal networks. The figure shows the estimated sampling distrubution of TSE, the
total squared difference between the internal consistancy checks for the conversational contact
network and the internal consistency checks for the meal network:

TSE =
∑

α

(
∆cc

IC − ∆meal
IC

)2

For all countries except for Indonesia, most of the mass of the estimated distribution is greater
than 0, suggesting that the meal network reports are more internally consistent than conversa-
tional contact network reports (Appendix C).

Estimates of internet adoption

Figure 7 shows estimated internet adoption for each country in our sample, using each tie
definition6. Two findings emerge from Figure 7. First, estimated internet adoption rates are
very similar for the conversational contact and for the meal networks; in all countries, the

5Conspicuousness and homophilic reporting are not distinguishable from the data. In this discussion, we focus
on conspicuousness; however, instead of Indonesian women being inconspicuous, it could also be the case that
Indonesian women have homophilic selection biases in choosing their detailed alters (i.e., they tend to report other
women at a higher rate than would be expected from simple random sampling of their network members).

6For the purposes of this study, we say that a person has adopted the internet if she has used the internet on
a computer or a phone in the last 30 days.
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Figure 5: Internal consistency checks. By estimating the same quantity using independent parts
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internally consistent with one another, within sampling error. Further, the results suggest that
reports about the meal definition may be more internally consistent, even though meal networks
are smaller than conversational contact networks.
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confidence intervals for estimates from the two tie definitions overlap. Second, the countries
can be divided into three groups according to estimated adoption rates: the United States and
Great Britain have the highest rates of internet adoption (above 75%); Brazil and Colombia have
estimated internet adoption rates between 50% and 75%; and Indonesia has estimated adoption
rates below 50%. This ordering is consistent with what would be predicted if economic factors
such as GDP per capita were the main driver of internet adoption.

Ideally, we would evaluate our estimator by comparing it to gold standard measurements of
internet adoption in each of the five countries. Unfortunately, no such gold standard currently
exists. Therefore, in order to further assess the plausibility of the estimates presented in Figure 7,
we compared our results to existing internet adoption estimates for Great Britain (Figure 8a)
and for the United States (Figure 8b), two countries where several alternative estimates were
available. The results show that the fast and inexpensive network reporting estimates are within
the range of other estimates (in the United States) and similar to or slightly lower than other
estimates (in Great Britain).

Summary and discussion

Several empirical findings emerged from the results of our study. We found that (1) reports
from the stronger network tie produced information about fewer people than the weaker network
tie in all five countries (Figure 4); but (2) reports from the stronger network tie appeared to
produce more accurate information than reports from the weaker tie in all countries except
for Indonesia (Figure 6). This finding is consistent with a hypothesized trade-off between the
quantity and quality of information produced by network reports (Feehan et al. 2016); previous
work found support for this theory in network reports about interactions in the 12 months
before the interview. We find that this tie strength trade-off may operate even when reports are
about interactions that took place the day before the interview. Future research could compare
different time-windows to see if the hypothesized tradeoff between the quantity and quality
of information operates across time within a fixed type of network tie. Over time, we hope
that a deeper understanding of the relationship between reporting accuracy and the different
dimensions of network tie definitions will accumulate, leading to useful guidance about how to
design studies like ours.

The internal consistency checks suggest that people’s reports about their network members can
suffer from reporting errors, and that these reporting errors vary by who is being reported about
(Figure 5). One possible mechanism for this result would be differential salience of interactions;
another possible mechanism could be homophilic selection of the detailed alters. Future research
could study different designs to try and distinguish between the salience of different demographic
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groups on the one hand and selection bias among the detailed alters on the other.

Finally, we also found that estimates of internet adoption from the two different networks were
very similar (Figure 7). We could not validate our estimates by comparing them to gold-standard
measurements of internet adoption rates because such a gold standard was not available. How-
ever, a comparison to other sources of estimates from the United States and Great Britain
showed that the network reporting estimates are consistent with other sources of estimates in
the United States and consistent or slightly lower than other estimates from Great Britain (Fig-
ure 8). Thus, we conclude that our fast and inexpensive strategy for obtaining approximate
estimates of internet adoption is very promising.

5 Conclusion

Our results suggest several possible avenues for future work. In this study, we focused on simple,
design-based estimators. A natural next step would be to start to build statistical models using
these data. These models could exploit the relationships that are embedded in the internal
consistency checks as a kind of constraint, estimating adjustments to ensure that reports are
internally consistent. Such a model could potentially improve the accuracy of the resulting
estimates. A second next step would be to use these data to produce estimates of internet
adoption by age and gender; in principle, this should be possible with the data we collected.

More generally, we see this project as an example of how survey research can adapt and thrive in
the information age. Decades of innovation, experimentation, and accumulated experience has
led to the modern sample survey. This research program has been a huge success: today, surveys
are the basis for a large share of quantitative research in demography, economics, political science,
sociology, and other disciplines. Looking to the future, survey research in the information age
faces challenges and opportunities (Groves 2011; Salganik 2017; Goel, Obeng, and Rothschild
2015). There are opportunities in the information age because it is increasingly fast and easy
to sample some groups of people online, and it is increasingly possible to conduct interviews
through computers, cell phones, tablets, or yet-uninvented means that can be much more flexible
than traditional surveys. For example, surveys administered over the internet can incorporate
an extremeley rich range of question styles, including items that feature video, audio, games,
chatbots, and more (Tourangeau, Conrad, and Couper 2013; Salganik and Levy 2015; Nosek,
Greenwald, and Banaji 2005; Couper, Conrad, and Tourangeau 2007; Fuchs 2009)

But survey research in the information age also faces big challenges. Response rates have
been rapidly declining and traditional sampling frames like landline telephone numbers are
increasingly inadequate (Meyer, Mok, and Sullivan 2015; Czajka and Beyler 2016; Kohut et
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al. 2012). Conventional surveys are also time-consuming and expensive, meaning that they are
only suitable for measuring quantities that only change over moderately long time-scales. Finally,
many important problems concern people who cannot readily be sampled and interviewed using
standard probability sampling (Sudman, Sirken, and Cowan 1988).

Researchers will have to adapt and innovate to overcome these challenges. In this paper, we
describe one way forward. We showed that a sample of people who are online can be used to
estimate internet adoption in five different countries around the world. Our approach is based
on the idea that people know things about other people to whom they are connected through
different kinds of personal networks.

We see our approach as a complement, rather than a replacement for conventional surveys.
The ideal situation would combine frequent, inexpensive estimates, such as the ones described
here, with less frequent conventional surveys. For example, a conventional probability sample of
the general population in a country could be used to empirically estimate the average number
of meals shared between an internet user and a Facebook user; with direct estimates of that
quantity, the need for a key assumption in our estimator could be completely removed. More
generally, a conventional probability sample survey can both be used to assess the accuracy of
the fast and cheap estimates, and they can also be used to try to measure and relax some of the
assumptions required by the faster, cheaper strategy.
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A Derivation of the estimators

Sampling setup

We assume a conventional probability sampling setup, following the theory of design-based
sampling; see Sarndal, Swensson, and Wretman (2003) for an excellent overview. Our frame
population F – the set of people who could potentially be sampled – is monthly active Facebook
users in a given country7. The population whose size we are trying to estimate is H, the number
of internet users in the country. The goal is to use information about people on Facebook’s
reported offline personal network connections in order to estimate the size of H.

We assume that we obtain a probability sample s from the frame population, where we use the
same definition of a probability sample as Sarndal, Swensson, and Wretman (2003). To briefly
review, we assume that the sample s is chosen from among the members of the frame population
F using a known random sampling method. The probability that i ∈ F is included in the sample
s, called i’s inclusion probability, is written πi. We require that πi > 0 for all i ∈ F . We call the
wi = 1

πi
the expansion weight for unit i ∈ F .

Finally, several of the estimators we study are ratio or compound ratio estimators. The literature
on design-based sampling has established that if each component estimator is consistent and un-
biased, then compound ratio estimators are design-consistent but, strictly speaking, compound
ratio estimators are not unbiased. Fortunately, a large literature has studied this problem and
such estimators are typically found to be very nearly unbiased, both in theory and in practice8.
Thus, we refer to these compound ratio estimators as essentially unbiased. The following result
formally establishes these important properties of compound ratio estimators; which we will use
these properties below.

Result A.1. Suppose that ŷ1, . . . , ŷn are estimators that are consistent and unbiased for
Y1, . . . , Yn respectively. Then the compound ratio estimator

R̂ =
ŷ1 . . . ŷk

ŷk+1 . . . ŷn
.

is consistent and essentially unbiased for R = (Y1 . . . Yk)/(Yk+1 . . . Yn).
7Throughout this paper, we use the term Facebook users to refer to monthly-active Facebook users.
8We do not expect the situations in which compound ratio estimators would be biased to be relevant to

our study; the biggest concern is typically when the denominator of R̂ is very small, which is not likely in our
applications.
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Proof. See Rao and Pereira (1968), Wolter (2007) (pg. 233), and Feehan and Salganik (2016a)
for more details.

Throughout this analysis, we work in the framework of design based sampling. Thus, when we
refer to an estimator as ‘consistent’, we mean design-consistent (also called Fisher consistent;
Sarndal, Swensson, and Wretman (2003)).

We adhere to the notation used in previous papers about network scale-up and network reporting
(Feehan 2015; Feehan and Salganik 2016a; Feehan et al. 2016):

• yi,B is the number of reported connections from person i to members of group B

• yA,B =
∑

i∈A yi,B is the number of reported connections from members of group A to
group B

• di,B is the number of undirected connections in the social network between i and members
of group B

• dA,B =
∑

i∈A di,B is the total number of undirected connections in the social network
between members of group A and members of group B

• vi,A is the visibility of i to group A – i.e., the number of times that i would be reported if
everyone in A was interviewed

• vB,A =
∑

i∈B vi,A is the total visibility of members of group B to group A

• ŷ → Y is shorthand for ’ŷ is a consistent and unbiased estimator for Y

• ŷ ⇝ Y is shorthand for ’ŷ is a consistent and essentially unbiased estimator for Y

• y+

F,H is the number of reported connections from F to H that actually lead to H. If
y+

F,H = yF,H then we say that there are no false positive reports

Aggregate reporting framework

We develop an estimator using the network reporting framework, an approach that builds upon
insights from several different streams of previous research on sampling (Feehan and Salganik
2016a; Feehan 2015; Sirken 1970; Lavallee 2007; Bernard et al. 1991). Feehan (2015) shows
that researchers can develop estimators based on network reports using either an individual or
an aggregate multiplicity approach. Since we do not collect information at the level of detail
required by individual multiplicity estimation, we adopt an aggregate multiplicity approach in
this study. This aggregate multiplicity approach is similar to the network scale-up method
(Bernard et al. 1991; Bernard et al. 2010; Maltiel et al. 2015; Feehan and Salganik 2016a).

24



Result A.2. Suppose that a census of the frame population F is interviewed and asked to report
about their connections to a group Z. Call the total number of reported connections yF,Z and
suppose yF,Z > 0. Further, suppose that there are no false positive reports, so that yF,Z = y+

F,Z .
Finally, suppose that v̄Z,F is the average visibility of members of Z; that is, v̄Z,F is the average
number of times that a member of Z is reported by someone in F . Then

NH =
yF,H

v̄H,F
. (7)

Proof. See Feehan (2015) and Feehan and Salganik (2016a).

To see the intuition behind the aggregate multiplicity approach from Result A.2, suppose we
conducted a census of the frame population, asking every frame population member to tell us
how many members of her personal network were online. Simply adding up the number of
reported connections to internet users would produce a number that is larger than the number
of internet users because each internet user can be reported more than once. Thus, in order to
adjust for this over-counting, aggregate multiplicity estimators divide an estimate for the total
number of reports by an estimate of hidden population members’ visibility. The visibility is the
number of times an average member of the hidden population would be reported if everyone
on the frame population responded to the survey. In this study, the visibility is the number of
times that the average internet user in a given country would be reported as an internet user,
if everyone on Facebook in the country responded to the survey. Dividing the estimated total
number of reported connections to people on the internet by the estimated visibility adjusts for
the over-counting that would occur if the reports were used to directly estimate the number of
internet users.

Given the aggregate multiplicity identity, our basic approach is to develop data collection strate-
gies and statistical estimators that enable us to estimate the numerator and denominator of the
identity in Equation 7. In the remainder of this Appendix, we develop necessary technical results
to use the identity in Equation 7 to estimate the number of internet users in a given country.

Estimates about detailed alters

Result A.3 formalizes a situation where respondents are sampled and then asked about a sample
of their network members. Result A.3 is stated in terms of an arbitrary dichotomous trait z that
respondents report about their personal network members; for example, z could be Facebook
usage, internet usage, gender, or membership in an age group.
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Result A.3. Suppose we have a sample s taken from the frame population using a probability
sampling design. Call the expansion weights given by the sampling design wi for each i ∈ s.
Further, suppose that for each i ∈ s, we obtain information from a simple random subsample si

of size ri from the di people in i’s personal network. Let zij be an indicator variable for whether
or not i reports that j has trait Z, and let zi =

∑
j∈si

zij be the total number of detailed alters
respondent i reports having trait Z. Then the estimator

ŷF,Z =
∑

i∈s

wi
di

ri
zi

is consistent and unbiased for yF,Z , the total number of reported connections to people with
trait Z in a census of the frame population in which respondents report about everyone in their
networks.

Proof. First, we note that we can consider this to be a multi-stage sample, where the first
stage(s) lead to selection of the respondent and the final stage is the subsampling of detailed
alters within each respondent’s network. Since the final stage is a simple random sample of ri out
of di network members, the design weight for the final stage is di

ri
for each detailed alter. In order

to show that the estimator is unbiased, we take expectations with respect to the multi-stage
sampling design:

E[ŷF,Z ] = EI [
∑

i∈s

wiEi[
di

ri
zi|s]] =

∑

i∈F

πiwiEi[
di

ri
zi|s]] =

∑

i∈F

πiwi


∑

j∼i

πi
j

di

ri
zij


 ,

where the outer expectation EI [·] is taken with respect to the sampling of respondents and the
inner expectation Ei[·|s] is taken with respect to the sampling of detailed alters within each
sampled respondent; j ∼ i indexes over all of the network members j that i could potentially
report about; and we have written πi for the inclusion probability of respondent i under the
sampling design, and πi

j for the inclusion probability of respondent i’s jth network member
under the subsampling design.

By definition, wi = 1

πi
and πi

j = ri

di
. Thus, continuing from above, we have

E[ŷF,Z ] =
∑

i∈F

πiwi


∑

j∼i

πi
j

di

ri
zij


 =

∑

i∈F


∑

j∼i

πi
j

di

ri
zij


 =

∑

i∈F

yi,Z = yF,Z .

So we have shown that the estimator is unbiased for yF,Z .

Finally, in a census of the frame population where every respondent reports about all of her
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network members, s = F , πi = 1, πi
j = 1, zi = yi,Z , and ri = di for all i and j. Thus

ŷF,Z =
∑

i∈s

wi
di

ri
zi =

∑

i∈F

yi,Z = yF,Z

So the estimator is design-consistent.

Corollary A.1. Under the conditions of Result A.1, the estimator

̂̄yF,Z =

∑
i∈s wi

di

ri
zi∑

i∈s wi

is consistent and essentially unbiased for ȳF,Z .

Proof. By Result A.3, the numerator is consistent and unbiased for yF,Z , and the denominator
is a sample-based estimate for the size of the frame population, N̂F =

∑
i∈s wi. Thus, this is

a Hajek-type estimator. See (Sarndal, Swensson, and Wretman 2003) for a proof that Hajek
estimators are consistent and essentially unbiased.

Note that Result A.3 implies that Equation 2 is consistent and unbiased for yF,H and Corollary
A.3 implies that Equation 4 s consistent and unbiased for ȳF,F .

Assembling the esitmator

The next estimator, Result A.4, shows that if we can estimate the total reported connections
from frame population members to internet users, and if we can estimate the average visibility
of internet users to frame population members, then we can estimate the number of internet
users.

Result A.4. Suppose that the ŷF,H is a consistent and unbiased estimator for yF,H and that
̂̄yF,F is a consistent and essentially unbiased estimator for ȳF,F . Further, suppose that reports
are accurate in aggregate, so that yF,H = dF,H and yF,F = dF,F . Finally, suppose that

d̄H,F = d̄F,F (8)
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Then the estimator
N̂H =

ŷF,H

̂̄yF,F

is consistent and essentially unbiased for NH .

Proof. Since ŷF,H → yF,H and ̂̄yF,F ⇝ ȳF,F , Result A.1 shows that N̂H =
ŷF,H

̂̄yF,F

⇝

yF,H

ȳF,F
. It

remains to show that yF,H

ȳF,F
is equal to NH . By the condition that reports are accurate in

aggregate, yF,H = dF,H and yF,F = dF,F . Thus,

yF,H

ȳF,F
=

dF,H

d̄F,F

.

Next, using the condition that d̄F,F = d̄H,F , we have

dF,H

d̄F,F

=
dF,H

d̄H,F

= NH
dF,H

dH,F
= NH ,

where the last step follows from the fact that we are assuming a symmetric type of network
tie, meaning that the number of connections from F to H must be equal to the number of
connections from H to F .

Result A.4 relies upon the condition that d̄H,F = d̄F,F (Equation 8), which requires that two
quantities be equal: (1) the rate at which someone who is on the internet shares a meal with
someone who is on Facebook (d̄H,F ); and, (2) the rate at which someone who is on Facebook
shares a meal with someone who is also on Facebook (d̄F,F ). This assumption could be violated
if, for example, people frequently organize sharing a meal together using Facebook (without
inviting other people).

To further understand the condition in Equation 8, note that since F ⊂ H (i.e., everyone on
Facebook is also on the Internet), it follows that

d̄H,F = pF |H d̄F,F + (1 − pF |H)d̄H−F,F (9)

where pF |H = NF

NH
is the prevalence of F among H, i.e., the fraction of people on the internet

that is also on Facebook. Therefore, when the condition in Equation 8 holds, then it is also the
case that
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d̄F,F = d̄H−F,F . (10)

B Sensitivity framework

In this Appendix, we describe a framework that can be used to understand how to assess the
sensitivity of the estimated number of people who use the internet to the various conditions that
the results in Appendix A rely upon.

In order to develop the sensitivity framework, we adapt previous work on network scale-up
and other network reporting methods (Feehan 2015; Feehan and Salganik 2016a). We start by
introducing three quantities, called adjustment factors:

ηH =
avg # reported connections from from F to H that actually lead to H

avg # reported connections F to H =
y+

F,H

yF,H
, (11)

and

ηF =
avg # reported connections from from F to F that actually lead to F

avg # reported connections F to F =
y+

F,H

yF,H
, (12)

and

ν =
avg # in-reports to F from F
avg # in-reports to H from F =

v̄F,F

v̄H,F
. (13)

Each of these new parameters is equal to 1 under ideal conditions, when the requirements of the
results in Appendix A are satisfied. In general, ν can take on any value from 0 to ∞, while ηF

and ηH can take on any value from 0 to 1.

The first sensitivity result reveals how estimated numbers of internet users will be affected if
one or more of the three adjustment factors is not equal to 1.

Result B.1. Suppose that the sampling conditions for Result A.3 hold, but that the reporting
and network structure conditions do not. That is, suppose we have a sample s taken from the
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frame population using a probability sampling design. Call the expansion weights given by the
sampling design wi for each i ∈ s. Further, suppose that for each i ∈ s, we obtain information
from a simple random subsample si of ri out of the di people in i’s personal network.

Now suppose that ŷF,H is consistent and unbiased for yF,H and that ̂̄yF,F is consistent and
unbiased for ȳF,F , but that ηF,H ̸= 1, ηF,F ̸= 1, and ν ̸= 1; that is, assume that the remaining
conditions in Result A.4 do not hold. Then the estimator

N̂H =
ŷF,H

̂̄yF,F

is consistent and unbiased for ( ηF

ηH
ν)NH .

Proof. The proof follows along the lines of Feehan and Salganik (2016a). Briefly,

N̂H =
ŷF,H

̂̄yF,F

⇝

yF,H

ȳF,F

by the sampling conditions. Next, we wish to use the adjustment factors to relate the estimand
to NH :

yF,H

ȳF,F
=

ηF

ηH

y+

F,H

ȳ+

F,F

=
ηF

ηH

vH,F

v̄F,F

=
ηF

ηH

v̄H,F

v̄F,F
NH

=
ηF

ηH
ν NH .

Thus, we conclude that
N̂H ⇝

ηF

ηH
νNH .

Corollary B.1. Under the conditions listed in Result B.1,

Bias[N̂H ] = E[N̂H ] − NH = NH(
ηF

ηH
ν − 1).

Now we show how problems with the sampling weights can affect estimates; this will be helpful
in understanding what impact non simple random subsampling of detailed alters would have.

First, we must define imperfect sampling weights. We follow Feehan and Salganik (2016a) and
repeat the definition here for convenience:
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Imperfect sampling weights. Suppose a researcher obtains a probability sample s from the
frame population F . Let Ii be the random variable that assumes the value 1 when unit i ∈ F

is included in the sample s, and 0 otherwise. Let πi = E[Ii] be the true probability of inclusion
for unit i ∈ F , and let wi = 1

πi
be the corresponding design weight for unit i. We say that

researchers have imperfect sampling weights when researchers use imperfect estimates of the
inclusion probabilities π′

i and the corresponding design weights w′
i = 1

π′

i

. Note that we assume
that both the true and the imperfect weights satisfy πi > 0 and π′

i > 0 for all i.

Result B.2. Suppose researchers have obtained a probability sample s, but that they have
imperfect sampling weights. Call the imperfect sampling weights w′

i = 1

π′

i

, call the true weights

wi = 1

πi
, and define ϵi =

w′

i

wi
= πi

π′

i

. Then

Bias[ŷ′
F,Z ] = NF [ȳF,Z(ϵ̄ − 1) + covF (yi,Z , ϵi)] ,

where ϵ̄ = 1

NF

∑
i∈F ϵi and covF (·, ·) is the finite population unit covariance in the frame popula-

tion F .

Proof. See Result D.2 in Feehan and Salganik (2016a).

Result B.2 will be useful to us because we can use it to understand situations where respondents’
reports about the detailed alters are different from simple random sampling.

Fact B.1. ∑

i∈A

aibi = NA[āb̄ + covA(ai, bi)]

Result B.3. Suppose that respondents do not report about the detailed alters by picking ri out
of di of them uniformly at random, so that the estimator for ŷF,Z in Result A.3 uses imperfect
weights l′ij = di

ri
for the final-stage subsampling of detailed alters, while the true weight for each

of respondent i’s detailed alters j is given by lij. Let ϵi =
l′
i

li
. Then the bias of ŷ′

F,Z is given by

Bias[ŷ′
F,Z ] =

∑

i∈F

∑

j∼i

zij(ϵij − 1).
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Proof.

E[ŷ′
F,Z ] = E


∑

i∈s

wi × Ei[
∑

j∈si

l′ijzij |s]




=
∑

i∈F

wiE[Ii] ×
∑

j∼i

E[Iij |s]l′ijzij

=
∑

i∈F

∑

j∼i

l′ij
lij

zij

=
∑

i∈F

∑

j∼i

ϵijzij ,

where j ∼ i indexes the people j that are reported in respondent i’s network. Thus, the bias is

Bias(ŷ′
F,Z) = E[ŷ′

F,Z ] − yF,Z

=
∑

i∈F

∑

j∼i

ϵijzij −
∑

i∈F

∑

j∼i

zij

=
∑

i∈F

∑

j∼i

zij(ϵij − 1).

To understand Result B.3 better, we manipulate the expression for Bias[ŷ′
F,Z ] with the aim of

producing a more interpretable expression:

Bias(ŷ′
F,Z) =

∑

i∈F

∑

j∼i

zij(ϵij − 1)

=
∑

i∈F

yi[z̄i(ϵ̄i − 1) + covj∼i(zij , ϵij − 1)]

=
∑

i∈F

yiz̄iϵ̄i −
∑

i∈F

yiz̄i +
∑

i∈F

yiσi

=
∑

i∈F

ziϵ̄i −
∑

i∈F

yizi +
∑

i∈F

yiσi,

where j ∼ i indexes the people j that are reported in respondent i’s network; yi = yi,U =
∑

j∼i 1

is the total number of people i would report about if there was no subsampling; z̄i = y−1

i

∑
i∼j zij

is the average zij among respondent i’s reported network members; z̄ = N−1

F

∑
i∈F z̄i is the

average z̄i across people in the frame; ϵ̄i = y−1

i

∑
i∼j ϵij is the average ϵij among respondent i’s

reported network members; ϵ̄ = N−1

F

∑
i∈F ϵ̄i is the average ϵ̄i across people in the frame; and

σi = covi∼j(zij , ϵij) is the covariance between the ϵij and zij among respondent i’s reported
network members.
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Finally, we use Fact B.1 twice–once within respondent and once between respondents:
∑

i∈F

ziϵ̄i −
∑

i∈F

yizi +
∑

i∈F

yiσi = NF [z̄ϵ̄ + covF (zi, ϵ̄i)] − yF,U + NF [ȳF,U σ̄ + covF (yi, σi)]

= yF,U




z̄ϵ̄ + covF (zi, ϵ̄i)

ȳF,U︸ ︷︷ ︸
between respondents

+ σ̄ +
covF (yi, σi)

ȳF,U︸ ︷︷ ︸
within respondents

−1




.

Thus, Equation ?? shows that when respondents do not choose detailed alters uniformly at
random, the resulting bias can be decomposed into a term that is related to how much variation
there is between respondents and a term that is related to how much deviation from simple
random sampling there is within each respondent.

C Additional results

country Conversational contact Meal
Brazil 13.1 (12.5, 13.6) 6.3 (5.9, 6.6)
Colombia 10.5 (10, 11.1) 7.2 (6.9, 7.6)
Great Britain 12.7 (11.6, 13.9) 4.4 (3.7, 5.3)
Indonesia 11 (10.4, 11.6) 7.5 (7, 8)
United State 12.1 (11.6, 12.5) 5 (4.6, 5.4)

Table 2: Estimated average degree and 95% confidence interval, by type of personal network

Country E[∆cc
IC − ∆meal

IC ]

Brazil 0.18 (0.02, 0.46)
Colombia 0.21 (-0.04, 0.56)
Great Britain 0.18 (-0.05, 0.65)
Indonesia 0 (-0.2, 0.19)
United States 0.05 (-0.05, 0.19)

Table 3: Estimated sampling distribution of the difference in internal consistency check squared
error for the conversational contact network minus internal consistency check squared error
for the meal network. Positive values mean that the conversational contact network was less
internally consistent than the meal network, as measured by squared error.
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