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Short Abstract  

 

Research over the last several decades has attempted to establish whether gains in life 

expectancy have been accompanied by better quality of those additional years by examining 

years remaining to be lived in good physical health. Although such research has established that 

elders are living longer and physically healthier lives than ever before, cognitive impairment 

potentially has a greater effect on quality of life.  In this paper, we investigate years to be lived 

with and without cognitive impairment and with high self-assessed quality of life (i.e., 

happiness).  Our key question is whether happy life expectancy exceeds cognitive life 

expectancy.  Put another way: is lack of cognitive impairment a necessary condition for 

happiness? To address this question we use Bayesian multistate life table methods applied to 

panel data from eight waves of the Health and Retirement Study. 
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Extended Abstract 

The well-being of older adults is a major concern in the US, as evidenced by extant 

policies put in place over fifty-years ago to promote at least a basic quality of life among the 

aged population (e.g., Social Security and Medicare). Quality of life, by many measures, has 

improved for older Americans. For example, longevity has increased and physical disability has 

been postponed to the latest years of life (Feedman & Spillman, 2016). However, as physical 

morbidity has been compressed into fewer years at the end of the life course, cognitive health has 

emerged as a major concern in recent years. In fact, estimates suggest that approximately a 

quarter of Americans aged 71 years or older have cognitive impairment even without dementia 

(Plassman et al., 2008), thus presenting new challenges to the well-being of older adults.  

While there have been numerous advances in treating chronic diseases such as heart 

disease and some cancers, there have been far fewer advances in treating diseases that produce 

cognitive impairment. Limited evidence shows that there has been a compression of cognitive 

morbidity, similar to trends in physical morbidity (Crimmins, Saito, & Kim, 2016). However, in 

light of population aging and the sheer size of the Baby Boom cohort, the incidence of cognitive 

impairment is likely to increase. Given that cognitive vitality is a major component of the 

successful aging paradigm (Rowe & Kahn, 1997) and is commonly considered essential for 

quality of life in old age (Gerstorf et al., 2015), research is needed to understand the role 

cognitive impairment plays in reducing the quality of life of elders.  

 

Quality versus Quantity of Life in an Aging Society 

 Research since the 1980s has attempted to confirm the compression of morbidity 

hypothesis in an effort to establish that our gains in years of life have been accompanied by 
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better quality of those additional years (Robine et al., 2003). This notion of quality versus 

quantity is well-reflected in the World Health Organization’s (1997) statement that “increased 

longevity without quality of life is an empty prize.” In other words, the concern is whether we 

are simply adding years to life versus adding life to those years.  

One common strategy for answering this question is to estimate the number of years an 

average person in a given population can expect to live in good health (e.g., healthy life 

expectancy). Specifically, total life expectancy is commonly divided into healthy vs. unhealthy 

years, and if healthy years exceed unhealthy years, quality of life is understood to be relatively 

good. A well-established literature has shown that older adults can generally expect to live more 

years in good health than in poor health, which is often taken to imply that quality of life is 

relatively good (see Stiefel, Perla, & Zell, 2010). However, this understanding is almost 

exclusively based on measures of physical health (e.g., self-rated health, and functional 

limitations). Therefore, it is relatively unknown whether additional years of life that have been 

gained over the last several decades are spent with some level of cognitive impairment (e.g., 

cognitive life expectancy)1. 

 

Cognitive Life Expectancy 

 Cognitive status is generally measured using instruments like the Mini-Mental State 

Examination (MMSE), and cognitive life expectancy is computed by dividing total life 

expectancy into the number of years an individual lives with and without impairment.  Recent 

reports of cognitive life expectancy show that at age 65 average life expectancy with good 

cognitive functioning, cognitive impairment without dementia, and cognitive impairment with 

dementia is approximately 13, 4, and 2 years, respectively—with some small gender differences 
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that favor women (Crimmins, Saito, & Kim, 2016). Additionally, emerging evidence shows that 

cognitive life expectancy differs by race/ethnicity, such that whites generally live more years 

with good cognitive functioning and fewer years with cognitive impairment compared to blacks 

and Hispanics in both relative and absolute terms (Garcia et al., 2017). However, cognitively 

healthy years do outnumber cognitively unhealthy years across gender and racial/ethnic divides, 

at least until the latest years of life. Thus, while social inequalities do exist, quality of life 

appears to be relatively high across the older population. 

 

Happy Life Expectancy 

 Although cognitive and physical health are important components of life quality, it is 

increasingly recognized that they not the only, or even most important, components. Research 

over the last decade has focused increasingly on happiness (and life satisfaction) as one of the 

key markers of life quality (George, 2010). In short, if we want to know how good someone’s 

quality of life is, why not simply as him/her whether s/he is happy? An individual’s perceived 

level of happiness or life satisfaction is arguably a better measure of his or her quality of life than 

a researcher’s imposed view of quality based on health measures (Layard, 2010). 

 In contrast to physical and cognitive health, happiness generally increases across the life 

course, at least until one’s mid-to-late-sixties when it begins to slowly decline (Bardo, Lynch, 

Land, 2017)2. This pattern suggests that good physical health and cognitive functioning may not 

be necessary components for happiness. In fact, research on happiness has found that gains in 

happy life expectancy (i.e., the number of years an average person can expect to live with high 

levels of perceived happiness) have outpaced gains in disability-free life expectancy (Yang, 

2008). However, thus far, these two areas of research have been separate, and samples vary 
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substantially across literatures. Thus, we do not have definitive answers to basic questions, such 

as: Can people have a high quality of life despite having some cognitive impairment? And, how 

many years can a person expect to live happy but with cognitive impairment?  We address these 

questions in this paper. 

 

Data and Methods 

 Data for this study are from the Health and Retirement Study (HRS), a panel study of 

persons over age 50 (and their spouses) that began in 1990. In the mid-1990s, the HRS merged 

with the AHEAD study, a study of persons over age 70. Measurement inconsistencies between 

the two studies and within the studies over time make it difficult to use health data prior to 1998. 

Thus, we use study data from 1998 forward (to 2012). Data have been collected every two years, 

and new cohorts are periodically added to the HRS; nonetheless, we restrict our analyses to 

persons who were age 50 in 1998 and present in the 1998 wave. We further limit the sample to 

one person per household. 

 

Measures 

Estimates of cognitive and happy life expectancy require information on cognitive 

function, happiness, age, and mortality. Cognitive function is assessed in the HRS with the use of 

an adapted version of the MMSE, which includes six tasks that respectively measure memory, 

working memory, speed of mental processing, knowledge and language, and orientation. Scores 

from each of these measures were combined to form a scale that ranges from 0 to 35. There is no 

definitive threshold to distinguish between people with and without cognitive impairment. Given 

that we examine cognitive and happy life expectancy using panel data that spans a relatively long 
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period of time (i.e., 1998-2012), and that cognitive impairment is not necessarily an absorbing 

state (i.e., cognitive functioning can improve and worsen over time), we use a liberal threshold—

the 25th percentile MMSE score—that has also been used in previous studies that utilized this 

scale (Blaum, Ofstedal, & Liang, 2002).  

The happiness measure was taken from the HRS’s set of depressive symptom measures; 

the question asks whether a respondent was happy (1) all/most of the time or (0) some/none of 

the time in the past week. This measure is similar to other measures in social survey data 

designed to capture overall evaluations of happiness (e.g., the happiness measure in the General 

Social Survey), except the temporal bounds are generally more limited in the HRS measure (e.g., 

“the past week” versus “these days”). Nonetheless, this measure arguably captures an appraisal 

of one’s overall happiness that is distinct from experienced well-being (e.g., positive and 

negative emotions) that is relatively more sensitive to personality traits and momentary 

circumstances (Freedman, Carr, Cornman, & Lucas, 2017). 

Age is measured in years (see Lynch and Brown, 2005).  Additionally, socioeconomic 

and demographic characteristics that are known to be associated with cognitive functioning, 

happiness, and mortality are also included in the analyses (i.e., sex, race, region of residence, 

education, and marital status). 

 

Analytic Approach 

Multistate life table methods are an important tool for producing easily understood 

measures that simultaneously reflect both quality and quantity of life. Most contemporary uses of 

these methods involve sample data, thus requiring techniques for capturing uncertainty in 

estimates. Over the last two decades, several methods have been developed that do so. However, 
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both the development and application of multistate methods have been limited to estimating 

years to be spent in only two states, such as years to be lived “healthy” vs. “unhealthy.” 

However, we are interested in a more complex state space that includes both cognitive function 

and happiness. Therefore, we utilize a recently extended version of a Bayesian approach that 

previously allowed for only two living states (i.e., Lynch and Brown, 2005). 

 First, the data are structured in person-spells, with each spell reflecting the transition an 

individual experienced between time t and t+2. Given eight waves in the HRS, each person may 

contribute up to seven spells to the data set. Persons who die prior to 2012 contribute fewer 

spells. Next, using these data, we compute interval estimates for happy and cognitive life 

expectancy using multistate life table methods. This involves (1) using Markov chain Monte 

Carlo (MCMC) methods to sample parameters from the posterior distribution defined by a 

multinomial logit model predicting transitions between un/happy and cognitively un/impaired 

states as a function of covariates, (2) generating sets of age-specific transition probability 

matrices for each of the parameter samples obtained via MCMC combined with a desired 

covariate profile, and (3) computing multistate life tables for each set of age-specific transition 

probability matrices. The output is a collection of multistate life tables, the results of which can 

be summarized, including via interval estimates. 

The state space we are interested in is shown in Figure 1. As the figure shows, there are 

four living states, including (1) happy and cognitively unimpaired, (2) happy and cognitively 

impaired, (3) unhappy and cognitively unimpaired, and (4) unhappy and cognitively impaired.  

Individuals may transition between any of these living states across time, they may remain in a 

state, or they may transition from any state to death, as represented by the arrows and transition 

probabilities shown in the figure. Thus, at each age, the state space can be represented by a 5-by-
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5 matrix of transition probabilities, where each row in the matrix represents the state a 

respondent is in at time t, and each column represents the state a respondent is in at time t+2 (the 

time between HRS interview waves is two years). Because death is an absorbing state, there are a 

total of 20 possible transitions. 

We model transitions between waves using a multinomial logit model with nineteen 

outcomes to capture transitions, with remaining in the happy and unimpaired state as the 

reference state, and with age and other covariates as predictors of transitions. Unlike the usual 

Maximum Likelihood approach to estimation of this model, which yields a single point estimate 

for the effects of covariates on the logit of transitions and their standard errors, Markov chain 

Monte Carlo methods sample from the posterior distribution of the parameters for the model.  

Details of MCMC methods in general can be found elsewhere (e.g., Lynch, 2007). In brief, 

MCMC methods yield collections of parameter values much like bootstrapping. With uniform 

prior distributions for all parameters in the model, the mode of the collection of parameters 

samples obtained via MCMC is equal to the ML estimate, and the standard deviations of these 

estimates is equivalent to the ML-estimated standard errors (although differing in interpretation). 

Let g be the matrix of parameters for the gth sample obtained via MCMC (g=ϭ…G), and 

let X represent a covariate vector in which all covariates but age are fixed to some desired value.  

Let Xa be this covariate vector in which age is set to a (a=Ϭ…).  We can obtain the age-specific 

transition probability matrix Pag as Pag =f(Xag), for all a, where f() is the usual inverse transform 

to obtain probabilities from multinomial logit coefficients. This yields G sets of   age-specific 

5-by-5 transition probability matrices. 

Each of the G sets of age-specific transition probability matrices can then be used to 

produce a life table for the fixed covariate profile using standard multistate life table methods. 
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Specifically, let lx be a 1-by-5 vector indicating the number of survivors in each state at age x.  lx+2 

can then be calculated as lxPa, where, again Pa is a transition probability matrix representing 

transitions between age a and a+2.  Given a complete set of lx across the age range, person-years 

lived in each state are calculated using the linear method: Lx=.5(lx+lx+2).  These can be summed 

from each age forward to obtain Tx, and a vector of state expectancies at each age (ex) can be 

computed by dividing each component of Tx by lx. The end result is a collection of four state 

expectancies indicating how long individuals can be expected to live happy and cognitively 

unimpaired, happy and cognitively impaired, unhappy and cognitively unimpaired, and unhappy 

and cognitively impaired.  These state expectancies can be summed to produce total life 

expectancy, overall life expectancy to be spent happy vs. unhappy, and overall life expectancy to 

be spent cognitively intact vs. impaired. 

Repeating these multistate calculations for each of the G sets of transition probability 

matrices yields distributions of state expectancies that can be sorted to produce empirical interval 

estimates, by taking the 2.5th and 97.5th percentile values. This entire process can be repeated for 

different covariate profiles so that specific social and demographic groups may be statistically 

compared in terms of their relative expectancies. For example, whites and nonwhites can be 

compared, with sex, education, etc. controlled, by generating G sets of transition probabilities 

with sex and education set to identical values for whites and nonwhites, while “toggling” race to 

indicate white in one set of computations and nonwhite in another. Then, given two collections 

of life tables (one for each race), the probability, say, that white cognitively unimpaired life 

expectancy exceeds that for nonwhites can be computed by conducting repeated sampling from 

the distributions of cognitively unimpaired life expectancy for both racial groups and computing 

the proportion of times the random draw for whites is larger than that for nonwhites.  
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Sensitivity Analyses 

Given that there is no definitive threshold for cognitive impairment, there are many 

different possible ways that the cognitive functioning scale could be partitioned. Thus, we will 

test various thresholds, similar to the work that has been done with functional limitation scales in 

estimates of active life expectancy (e.g., Lynch & Brown, 2003). One common partition that we 

will utilize is the Herzog and Wallace (1997) approach, which suggests that scores of 11 or 

above are considered to be within the range of normal cognitive functioning, scores between 8 

and 10 reflect mild cognitive impairment, and those with scores less than 8 are considered to 

have moderate/severe cognitive impairment. We will also consider adjusting for test-retest bias, 

and cohort differences in educational attainment (see Lagana et al., 2008).  

Another issue with using this measure of cognitive functioning is that respondents with 

cognitive impairment often do not complete all of the tasks (e.g., Serial 7s), and often in cases of 

severe cognitive impairment proxies will complete the survey for respondents. Various 

imputation techniques will be used to deal with incomplete tests (see Suthers et al, 2003). 

However, information for both the MMSE score and the happiness measure is missing when 

proxies complete the survey. In this case, there are some memory and dementia-related questions 

asked of proxies that can be used to determine respondents’ cognitive status (Crimmins et al., 

2016). Additionally, given that we hypothesize happy life expectancy to be longer than cognitive 

life expectancy, respondents with cognitive impairments who used a proxy can be assigned as 

“unhappy” to produce conservative estimates. 

 

Results 
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 Currently the extended Bayesian multistate life table methods are being finalized. 

Therefore, our results are forthcoming. We will have results within the next couple of weeks and 

a complete paper will follow shortly thereafter. However, below we report some descriptive 

statistics to show how people move in and out of cognitive impairment and happiness states.  

Table 1 shows the observed transitions for moving in and out of un/happy and cognitively 

un/impaired states with cognitive impairment set at the 25th percentile threshold (e.g., MMSE 

scores equal to or less than 18). Three features of this table are worth noting. First, all cells are 

populated. Thus, there is indeed communication between un/happy and cognitively un/impaired 

states. Second, a substantial number of deaths occur over the study period. These two features 

are particularly important for multistate life table modeling, especially with the use of a complex 

state space. Third, the most common state is to remain happy and cognitively unimpaired, which 

makes this an ideal reference group for the multinomial logit models.  

Table 2 shows the observed transitions for moving in and out of un/happy and cognitively 

un/impaired states with cognitive impairment set at the Herzog and Wallace mild/moderate 

threshold (i.e., MMSE scores equal to or less than 10). Here, similar features as shown in Table 1 

can be seen, with one major difference being that relatively fewer people are recognized as 

having a cognitive impairment. Nonetheless, all cells are populated. Thus, the extended 

multistate life table methods should be effective for examining various cognitive impairment 

thresholds. 
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Notes 

1. A search for “healthy life expectancy” yields approximately 13,700 results on Google Scholar, 

whereas “cognitive life expectancy” yields only 6 results (date of search: 09/20/2017). 

2. It is generally understood that happiness does not follow a biologically set age pattern, rather 

age patterns in happiness are largely dependent on cultural contexts. For example, American’s 

happiness increases at a decreasing rate across age until about one’s mid-to-late sixties when it 

begins to slowly decline. Whereas European’s happiness tends to be U-shaped with a minimum 

between the mid-thirties and forties (see Bardo, 2017). 
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Table 1. Observed transitions: cognitive impairment 25th percentile threshold (MMSE < 18) 

 
HU UU HI UI D 

HU 20,149 1,566 2482 326 1695 

UU 1458 874 218 187 339 

HI 1279 137 3147 385 1236 

UI 133 91 382 252 295 

D 0 0 0 0 ALL 

Note: HU = happy-unimpaired, UU = unhappy-unimpaired, HI = happy-impaired,                             
UI = unhappy-impaired, D = dead 
 

 

Table 2. Observed transitions: cognitive impairment Herzog Wallace (MMSE < 10) 

 
HU UU HI UI D 

HU 25,829 2,257 690 95 2575 

UU 2045 1316 75 45 579 

HI 190 26 348 36 356 

UI 30 15 41 28 55 

D 0 0 0 0 ALL 

Note: HU = happy-unimpaired, UU = unhappy-unimpaired, HI = happy-impaired,                             
UI = unhappy-impaired, D = dead 
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Figure 1.  State space used in multistate life table modeling. 

 


